Projet RUIG-GIAN

Réseau universitaire international de Genéve (RUIG)
Geneva International Academic Network (GIAN)

Analyse linguistique et
extraction de collocations

Rapport final

Partenaires:
Organisation mondiale du commerce (OMC)
Laboratoire d’analyse et de technologie du langage (LATL)

Coordination :
Eric Wehrli

LATL - Département de linguistique
Université de Geneve
1211 Genéeve 4

Eric. Wehrli @ettres. unige.ch

Table des matieres

1 Sous-systeme COLLOCATION. ..ottt 5
1.1 Index de la doCUMENTALIONc.euviiiiiiieeiiie e 7
1.2 Manuel de PULIISALEUNcciiiiiiiiiiie e 11
1.3 Manuel de l'utilisateur - IMages ..., 19

[T T 1= 0 Yo [21
[T T 1 =228 Yo [22
FIQUIE 3.00C. ... ettt ee e 23
[T T 1= 5 Yo [24
[T T 1 (=15 750 Yo [25
FIQUIEG.0MC. ... ittt 26
[T T 1 (=4 Yo [27
[T T 1 (=R 710 T [28
FIQUIEO.0MC. ... ettt e e 29
FIQUIELO.OGC. ... e e 30
1.4 Manuel du deVEIOPPEUNccoivieieieec e e e e e e 31
1.5 Manuel du développeur — MOUIES.........ccooiiiiiiiiiiiiiee i 40
(@0] [o or=1110] oV 2N [T | o SR 41
COllOCAtIONBIOWSE ...ttt 42
CollOCAtIONCIMAS. ...ttt 44
COllOCALIONDBcceiiiieee e 46
COllOCALIONDBAUX ...ttt 49
COllOCALIONEXE.......uuiiiiiiiiiiiiiiiiii e 50
COllOCAtIONFIILEN ...t 51
CollocationGIobal.............uviiiiiiie e 52

CollOCAtIONOPLIONS.......uiiiiiiiiiiiiiiitibbbib bbb 62

ColloCAtIONREAA 63

ColloCAtIONSEIBCT ... 64
CollocationValidate ..o 66
ColloCatioNWED.......ccoiiii e 69
SOUS-SYSIEME UTILS ...ttt s 71
2.1 Index de la doCUMENALIONcovvviiiiiiiiiiiiiiiii 73
2.2 Manuel de I'ULIISALEUNcoiiiiiiiiiiii e 77
2.3 Manuel du dEVEIOPPEUFciiiii ittt 83
2.4 Manuel du développeur —ModUIES............ccooiiiiiiiiiiiiiiiie e 89
ULISCIMAS .ot e e e 91
UISFIIETIEE ...ttt e e 93
ULISFUNCLIONS ...ttt 95
(011 ES1 @1 0] £ 99
ULIISPIOCESSFIIES ...t 102
UBIISSCAN ...ttt e 104

1. Sous-systeme

COLLOCATION

Emplacement : sources/project/Collocation

1.1 Index de la documentation

Emplacement: Collocation/Docu/Sys-Map.odc

Projet RUIG-GIAN, 2002-2003

Collocation Extraction and Visualization

Violeta Seretan
LATL, Violeta.Seretan@Ilatl.unige.ch

User Manual
Developper Manual

Modules: CollocationAlign, CollocationBrowse, CollocationCmds, CollocationDB, CollocationDBAuX,
CollocationExe, CollocationFilter, CollocationGlobal, CollocationOptions, CollocationRead, CollocationSelect,
CollocationValidate, CollocationWeb

Sources: CollocationAlign, CollocationBrowse, CollocationCmds, CollocationDB, CollocationDBAux,
CollocationExe, CollocationFilter, CollocationGlobal, CollocationOptions, CollocationRead, CollocationSelect,
CollocationValidate, CollocationWeb

Interface: Open interface

10

1.2. Manuel de l'utilisateur

Emplacement: Collocation/Docu/User-Man/

11

12

V.Seretan, Violeta.Seretan@lettres.unige.ch

Collocation Extraction and Visualization
- a brief visual guide -

November, 2004

User Manual

Contents

I. Overview

Il. Collocation Extraction Interface

I1l. Collocation Visualization Interfaces
IV. Further Information

See also: Developper Manual, Subystem Map

. Overview

This document explains how to use the tool for collocation extraction and visualization. It contains visual
indications about the collocation extraction interface (menu option: Collocation -> Extraction) and the collocation
visualization interfaces (menu options: Collocation -> Concordance and Collocation -> Alignment).

Back

II. Collocation Extraction Interface

This interface allows the user to extract collocations from a collection of files. The collocation extraction
first performs the syntactic parsing of files, then applies a stochastic test for ranking the extracted
word expressions according to the likelihood to constitute a collocation.

In order to process a collection of files, several steps need to be performed:
- select the input folder, i.e. the folder containing the collection of documents;
- optionally, filter the files to be processed (the filtering can be done automatically and/or manually);

- select the output folder, i.e. the folder where different result files (including the extracted collocations) will be stored.
Note: for storing the collocation extracted in a database rather than in a text file, a datasource called "cooc" and pointing

to the file "cooc.mdb" provided with this application must be defined by a system administrator.
- select the processing parameters (the options for parsing and for storing the extracted collocations).

The paragraphs below provide explanations for :

1. how to choose a folder with the files to be processed;

2. how to apply an automatic filter on the files contained by this folder;

13

3. how to further apply a manual selection of the files to be processed;

4. how to choose the folder in which the results will be stored;

5. how to set the processing parameters.

Back

1. How to choose a folder with the files to be processed

The input folder can be chosen either by:
- typing in the edit field the complete path of the folder;
- browsing the file structure on a disk drive.

Figure 1. Input Folder

Back

2. How to apply an automatic filter on the files contained by this folder
The content of the input folder (the files) can be restricted using several criteria:

- the file contains a specific string in its name
To use this filter, type a string in the text field “include only files named".

- the file has a specific type
To select only files of a desired type, fill in the field “include only files of types" with the desired file extension.
Then click on the button "Add" close to this field. You can repeat the procedure to specify other types.
Note: The supported file formats are:
ASCII and Unicode files (e.g. txt, htm, html)
ODC files (BlackBox specific file format)
rtf files (rich text format from word processors like MS Word)
UTF-8 (extension utf8)

- the file is contained in the root of the input folder or in one of its subfolders.
To select all the files in the input folder, check the option "include files from subfolders".
To select only the files in the root of the input folder, uncheck this options.

- the file is (not) contained in a subfolder with a specific name
To exclude the files contained in specific folders, check the option 'exclude files from folders named'
and add the names of the folders to be excluded in the list below it. To add a folder name for exclusion,
type it in the list header and click on the button 'Add folder name'. All the folder names added to this list
will be used for files filtering.
Note: Default value for this list: the folders named "Log" (output by the collocation extraction).

- the file has been last modified at a specific date
To apply a filter on the date of files last modification (includes creations), check the box
‘include only files created/modified’. Then specify if the system should verify that the file was modified
several days previously to the current date, or in a given days interval. To do that, choose either
the radio button "in the last ... days" and enter the desired number of days, or the radio button
"between ... and ...", and specify two dates.
To specify the start limit, enter a date in the format DD-MM-YY in the field next to "between".
To specify the end limit, enter it in the field next to "and".
The default values that are proposed are between yesterday and today.

Figure 2. Automatic Files Filter

Back

14

3. How to further apply a manual selection of the files to be processed

The content of the input folder is filtered according to the automatic filter and is shown in a list, from which
the user can manually choose which items (files or subfolders) to be processed.

To include or exclude items, use the buttons "Check All", "Uncheck All", "Invert" or use the mouse in
combination with the keys Ctrl or Shift.

Figure 3. Manual Files Selection

Back

4. How to choose the folder in which the results will be stored

As in 1, either type the name of the folder directly or browse the disk structure.

If the folder name does not exist on the disk, it will be created when the output is produced.
Note: The result files will be written in the output folder, and they will be gathered in a folder
having the same name as the folder containing the input files.

Figure 4. Output Folder
Back

5. How to set the processing parameters

There are two kinds of parameters to set: for parsing and for collocation extraction.

Parsing parameters that must be set: language only (English and French are supported for now).
The others may keep the default values (max alt 10, shallow parsing checked, filtering checked,
output structure unchecked).

Extraction parameters should specify where to store the collocations extracted.

Note: By storing collocations in a text file, some functionalities will not be available (collocation score
computation, corpus frequency count, filtering, ordering).

Both for parsing and extraction, additional files are produced that concern the global statistics

for a processing session (globalStat.txt) and Log files. If the parameter output structure is selected,
then files containing syntactic analyses are produced.

The parameters save results in one file and results file per file decide if the results are cumulated
for all the files or are saved separately, file per file. In the last case, a mirror copy of the input
folder's structure is created in the output folder.

The parameter text files format decide which type the results files will have: txt or odc

(BlackBox internal format).

Figure 5. Processing Parameters

Back

l1l. Collocation Visualization Interfaces

These interfaces are represented by the Concordance tool and the Alignment tool.

They both displays the collocations previously extracted and their contexts (the sentences)

in the originating files (the document in which they occur). The alignment tool displays, in addition,
the hypothesized target context in the parallel documents, when available. That is, when translations
exist for the originating documents, the system tries to identify the translation of the source sentence
and displays it next to the source sentence.

The figures below explain how to use the visualization tools:

15

- How to display the whole list of collocations

The list in the left side displays the distinct collocations. To see all the occurrences of a collocation
in the corpus, use the first, previous, next and last buttons at the bottom of the list.

Figure 6. Collocation Visualization Interface - Navigation Buttons

- How to display a subset of the extracted collocations

Use the button "Filter" to open the "Filter Collocations" interface. This allows to filter the collocations
by using different criteria that can be combined:

- collocations containing a given word (keyl or key2);

- collocations of given types (multiple types can be selected from the list of types);
- collocations that have at least the given number of occurrences in the corpus;

- collocations that have the score bigger than a threshold;

- collocations that were (manually) validated.

The number of collocations to display can be limited by entering a maximum number of collocations
to display. The order of score and corpus frequency is taken into account. The maximum number refers
to distinct collocations. All the occurrences of each collocation in corpus are also shown.

Figure 7. Collocation Filtering Interface

-How to order the list of collocations

Use the button "Sort alphabetically” to alphabetically order the (filtered) list.
Use the button "Filter" and choose Order by score or frequency to apply the respective filter.

Figure 8. Collocation Ordering

- How to create a bilingual collocation database

The user can add collocation entries in a bilingual database of validated collocations. This database

is stored in the table "BilingualCooc" in the database "cooc.mdb" provided with the application.

Use the button "Validate" to add the currently visualized collocation to a temporary list of collocations

for validation. Edit the details of the entry in the temporary list. As long as for an entry the translation was
entered and this entry is not already present in the bilingual database, it will be added in the database.
Use the buttons "Validate All" or "Validate Selected" to store the desired entries in the database.

The temporary list of collocations for validation can be consulted at any moment from the menu
Collocation -> Validation List.

Figure 9. Collocation Validation

-How to consult the extracted collocations later

The interface "Display Options" helps to specify where the visualization tools will look for the data

to be displayed. Choose for "Data Source" either database or text file. In the last case, choose a file
named (or prefixed) "cooc" from an output folder used at extraction.

The language of the data to be displayed must be specified (when using the "cooc.mdb" database,
the collocation data are stored in different tables for the 3 different languages).

For alignment, the paths of the existing parallel corpora need to be specified. Be default, the

same path of the input folder is considered.

16

Figure 10. Display Options

Back

V. Further Information

Contact Violeta.Seretan@lettres.unige.ch for further questions or comments.

Back

17

18

1.3 Manuel de l'utilisateur -

Images

Emplacement: Collocation/Docu/Figures/

19

20

=+ <Figure 1 - Input Folder>

Figure1.

#= Collocations Extraction /multiple files

Input folder

Collocation Extraction from Multiple Files

1 1. Input Falder | 2. Files Filter || 3. Manual Selection | 4. Dutput Folder | 5. Process
nve
IEtter Chooze the folder containing the input files: gL
] j I'\\IatI2EIEID'xBIacanH'\Textes'\DMC'\English\Ul\F.t’-‘n.'\ Browse I
B3 Ur {03+ dac.btm .
i LB 04-wto,doc. hitm
OE-gatt. doc. htm
07-2-1-b.doc htm
1| 08-17 .doc.htm
03-bopz. doc.htm
10-24.doc. hitm
11-25. doc: htm
12-28.dochtrm
ey 13-mprat.doc.htm
fold (27 GNGNGD2 o hih folder
older | cueneos 15-3ps. doc. htm cantert
ﬁle tree 771 GHGNGO4 16-tex doc him
7] GNGNGIS 1E-tex.wpt.htm
e 17-bt.doc. htm
(7] GNGNGOS 18-trinniz. doc. htrn
GMGHGOY 13-adp. doc htm
{21 GMGNGOS 12 g-adlnawpfhhtm
[GNGNGOS e
Eme Hiiiiiit || 21-psi.doc.him ;I
See file list | Extract Collocations I .Eancell |

go to
parent
folder

create
folder
file tree

21

=3 <Figure 2 - Automatic Files Filter>

Figure 2. Automatic Files Filter

¥ Collocations Extraction /multiple files x|

Collocation Extraction from Multiple Files

1. Input Folder 2 Files Filker | 3. Manual Selectionl 4. Dutput Folderl 5. Process Files l

ﬁlename Chooze the optionz for the automatic filkenng of files; ﬁle date
substring (last modified)
File name and type ~File date
include orly fles pamed: [t ¥ include orly files creétédf'mndld:/

ﬁlelgs pe Jilx include anly files of twpes: [him ~| Add " inthe last E days

& betweer, |01.12.2003 E
rﬂdvance‘d
! :) :
¥ include files from subfolders arn |—31 EFEIE E

W exclude files framn folders named:

ILDg j Add folder namel

B

first/all
folder levels

Reszet all |

subfolders
to be
excluded

See file fist | Extract Eollocationsl Cancel

22

&= =Figure 3 - Manual Files Selection=

Figure 3. Manual Files Selection

#= Collocations Extraction /multiple files

Collocation Extraction from Multiple Files

1. Input Folder | 2. Files Filker 3. Manual Selection | 4. Qutput Folderl B, Process Filesl

Choose the filez or subfolders using the mouze and the keys Chl and Shift:

03-fa.doc htm

04-wto.doc. htm Check all

Uncheck Al

Inwvert

L

15-spz. doc htm
16-tew. doc. htrn
f

18-trimz. do il
19-adp.doc. htm
19-adp.wpf_htrn
20-+val doc. htrn

See file izt | Eutract Eollncationsl Cancel

X]

23

¥ «Figure 4 - Output Folder>

Figure 4. Output Folder

= Collocations Extraction /multiple files

Collocation Extrs

go to
parent
folder

drive i Input_FDIderI 2 Files FiIterI 3. Manual Selec 4. Output Folder | 5, Process Filesl

letter Chooge the folder in which the results will b stored:

1 =] [CMemphOT1GNGRM!

create
folder
file tree

alobal5ial, ode

Lol

output. 1.RFT.ode
lrastated- T RFT odc

folder

folder .

file tree

See file list | Extract Eollocationsl Cancel

24

=+ <Fgure 5 - Processing Parameters »

Figure 5. Processing Parameters

5 Collocations Extraction /multiple files

Collocation Extraction from Multiple Files

1. Input Folder | 2. Files FiIterI 3. Marwal Selectfonl 4 Output Folder 5. Process Files

Choose the optiohs for parsing and collocation extraction:

choose .
extraction

texts i~ Parze ophions -~ Collazation Estraction Options It
resuits
Ianguage Language Save collocations ba:
- format
 database in the associate
S = JC1aT :
il [_E (= hegit with anempty fatble
default L\“::.
parsing ¥ Filtering € contifue with existing results
ﬂptiﬂns ¥ Shallow Parsing 1 bt fle
o Bt o % all resuilts in one file
/—————f_ ™ results file per filef{/—

save parse format of
different
output files

structures Output files format: " AECN (i) 5 BlackBox [odg)

See file list | Extract D:ullocatiu:unsl Caticel |

25

=3 <Collocation ¥isualization=

Figure 6. Collocation Visualization Interface - Navigation Buttons

&% Concordance

Display Collocations

commercial presance
firzt mesting

supplier of other
multiateral spstem
envionmental measure
ervironmental purpose
entry into force

firal report

technical standard
related aspect

becoms to

submit schedule

biing to attention
coverage offer

Collocations Contextin file \\atl2000\BlackBox\T extes\DMCAE ngleh U FAN48-dsfin dac. hitm
[Score: 52 50] [File symbol LTUURLUD-BUZ LT UR D52 Callectian LR]

1 nuguay raund j<HEAD:> ﬂ

financial suppliet [=BO0Y =

=p=DECISIGN ON FINANCIAL SERVICES<ip>

date of entry <p==ip=

same time =p=Ministers, <>

separate custom <p==ips

== Noting that commitments scheduled by participants on financial services al
the conclugion of the Uruguay Round =hall enter info force on sn MFN basiz &t the
sarme time as the Agreement Establizhing the World Trade Crganization (hereinafter
referred to a3 the "WTO Agreement”), <=

=p==ips

=p= Decide as follows <ip= _l
=p=sipe

f=p=1 At the conclusion of & period ending no later than six months after the date of
lentry into force of the WTO Agreement, Members shall be free to improve, modity or
withdraw all or part of thelr commitments in this sector without offering compensation,
Inotwithstanding the provisions of Article XXl of the General Agreement an Trade in
IServices. Afthe same time Members shall finalize their postions relating to MFN

Sort alphabeticall |

ionsg in this sectar, natwithstanding the provisions of the Annex on Article Il

ons . From the date of entry into force of the WTO Agreement and until the end
eriod referred to above, exemptions Iisted in the Annex on Article | Exemptlions
are conditional upan the level of commitrments undertaken by other participants :I

five - Naun] Corpus frequency, 17

Yalidate .. I

Open source hile |

X

26

= =Collocation Filtering >

Figure 7. Collocation Filtering Interface

enter part of
collocation to
search

Collocation Filter

Keyl: jtake

Collacation type:

Adjective - Noun
Noun - Adjective
Moun - Moun(head)
Subject - Verb

Moun - (Pred) - Adjective
- Prep - Noun

select
collocation

types

limited
number of
colocations

Key2: |
— Order by - Threshaold

(" zcore sCOreE

% frequency frequency: |1 E
Crizplay.
¥ new collocations [validated only

[collocations in lexic

collocations

min humber of
oCcCUIrences

show only manually
validated collocations

show newly extracted
and/or
collocations in the lexic

27

= =Collocation Ordering>

Figure 8. Collocation Ordering

- Ordering criteria that applies to filtering (limited collocation number):

&% Filter Collocations =00 %]
Collocation Filter nrdering
Key2: cHteria
Crder bry: " —Threshok
(" zeore Seate; m
[+ freguency frecuemy: ﬁ_E
Cisplany:
[V rew collocations [~ walidated only
[~ collocations in lexic
I messtimiim] collocations
agpy | cancel |

28

== <Caollocation Yalidation=

Figure 9. Collocation Walidation

% validate Collocations

— Entry Details
Collocation:

Tranzhation:
validation ™ spanish |
Iiﬁ Sample contesd il achévera ces négociations et présentera un rapport final su plus tard d
le 30 &vril 1996
=
Context translations:

entry

details =101 x|

Collocations for Yalidation

Keyl: |achﬂver KeyZ Inégu:nciation Type: |Verb-0b]ect

[V English It shall conclude these negotiations and make & final report no later than ﬂ

I™ Spanish Concluirs las negociaciones y presentsrd un informe final &8 méas tardar ;I

|ach ever negociation

[+ English Icnnclude negatiations

30 April 1996

=

el 30 de abril de 1996

=

Walidate Al

Yalidate Selected Delete Al Delete Selected |

29

= <Display Options >

Figure 10. Display Options

&4 Display Dptions = |I:I| EI
il Display Options
language :
[Sourcelanguage— [~ Data source }{/ —Walidated data
" French (¥ database [ik vt =
& Engiish " best e Choosefie |
(~ Soarish paths of
| parallel
— Paths of parallel corpora (for alignment)
cofpora

French Corpus: |\\BM\B|aC‘kBDH\TBHt&S'\.DHE\FrenCh'\Ul'\Fﬂ.'\ //\\

Erglish Carpus; I\\latl‘.?ﬂ]ﬂ\BlackBm:\Texte:&\DHE\E nghshyLIFAY

Spanith Corpus: I‘\'\Iatl?.EIDU\EIaCkBUr:\Te:dtes‘\DHl:\S panish\LIMFAY

Cancel |

30

1.4 Manuel du développeur

Emplacement: Collocation/Docu/Dev-Man.odc

31

32

V.Seretan, Violeta.Seretan@lettres.unige.ch

Collocation Extraction and Visualization

Developper Manual

November, 2004

Contents

Overview
Architecture
Relations with other subsystems

Compilation
Open the interface

Terminology

See also: User Manual, Subystem Map

Overview

This document describes the Collocation subsystem, a collection of modules that deal with the collocation extraction and
visualization in parallel corpora. The extraction is based on Fips parser. The Collocation subsystem imports modules of Fips,
and not the vice-versa. It needs the subsystem Utils, that allows the execution of Fips on a corpus of files (rather than on a
single file) and that also implements useful general procedures.

Collocation subsystem mainly does the following:

- execute the Fips parser on a selection of files, extract collocation and store the collocation data either in a file or in a
database;

- read collocation data;
- apply different filters on collocation data;
- visualize collocation with a concordance and an alignment tool implemented in the same subsystem;

- allow a user to validate a series of interesting collocations and to store them in the database.

Back

Architecture

The relationship between the subsystem's modules is shown below (the directed arrow means the module at the arrow
source imports, i.e., uses, depends on, the module at the target).

33

LallocstionExe

The root modules (the main modules, not imported) are CollocationCmds, CollocationValidate and CollocationWeb.

CollocationExe is used just to gather the root modules into a single compilation unit; this facilitates the creation of exe
applications.

CollocationWeb implements the extraction of collocates from the Web using the Google APIs. This module uses other
modules for collocation extraction (from Google's results) and visualization.

CollocationCmds is the most important module of the subsystem. It contains the main GUI commands and controls the
visualization.

CollocationValidate supports the creation of a database of manually validated collocations during the visualization with the
concordance and alignment tools.

CollocationSelect implements the actions to execute when the users selects a collocation displayed by the visualization
tools: show its features, context, source file, etc.

CollocationAlign implements the sentence alignment between source and target documents in the parallel corpus (in the 3
languages currently taken into account: Fr, En, Sp).

CollocationBrowse implements the functions of browsing through all the instances of the currently selected collocation in the
visualization tools (sets the index that uniquely identifies the collocation instance and enable/disable browsing buttons First,
Prev, Next, Last).

CollocationDB is used to support the interface of Collocation subsystem to the associated database and to perform the
SQL queries for the collocation score computation. CollocationDBAux is an auxiliary module used in SQL queries during the
collocation score computation.

CollocationOptions saves and retrieves the options of collocation subsystem, stored as txt files.

CollocationFilter applies filters, on several criteria, on the collocations extracted in order to allow only a part of them to be
visualized.

CollocationRead read (possibly filtered) collocations either from the associated database of from an ASCII file, and builds the
collocation list on the interface form of visualization tools.

34

CollocationGlobal contains the main global variables of teh system, through which the modules communicate,
as well as guard procedures for these variables.

Back

Relationship with other subsystems

1. Collocation and Utils

The relationship between the modules of Collocation and Utils subsystem is shown below.

CollocationGiokbal

ilzProcessFiles

UtilsProcessFiles imports modules of Collocation subsystem since it performs the collocation extraction on files selected
with Utils Multiple File Selection tool.

UtilsCmds does the same for setting up the database used in collocation extraction.

There is no import from Collocation subsystem to Utils subsystem, except for the module UtilsFunctions (with general-use
procedures).

2. Collocation and Fips

The relationship between the modules of Collocation and Fips subsystem is shown below.

35

CollocationWeb imports Fips in order to run the Fips Term Extractor tool.

CollocationCmds imports Fips in order to get the Fips parser options (to know where the Fips Term Extractor tool stored its
results).

CollocationOptions imports the module FipsXMLTools to store the options files in XML format.
CollocationSelect uses constants defined in FipsConst to know whether the current collocation is a compound or an idiom.
CollocationAlign uses procedures for tagged text processing from FipsXMLTools.

CollocationRead calls a procedure from FipsCmds to clean the source (and target) file it must display; the same procedure
was called at extraction time by Fips Term Extractor, therefore it has to be called again at display time.

CollocationGlobal uses constants defined in FipsConst in order to set up the list of possible syntactic types for collocations.

There is no import from Fips subsystem to Collocation subsystem.

Back

Compilation

To compile:

=

@ DevCompiler.CompileThis

CollocationGlobal CollocationOptions CollocationFilter CollocationBrowse CollocationRead CollocationAlign CollocationSelect CollocationDBAux

CollocationDB CollocationCmds CollocationWeb CollocationValidate CollocationExe
&

Back

Open the interface

Use the command below to open the interface of the tool:

0"Uti|sCmds.OnTerm Extractor"

Back

36

Terminology
The following terms (explained below) are often used in the documentation of modules of Collocation subsystem.
alignment- method of finding the equivalent of a piece of text in the parallel corpora.

alignment tool (for collocations) - a visualization tool that displays both source and target collocation contexts for the items
of the collocation list.

associated database - the database associated with the subsystem. Stores the extracted and validated collocations. Allows
the score computation and collocation filtering. Must be configured as a datasource in the operating system. The datasource
name set by the program by default is "cooc".

cooccurrence - collocation candidate (word pair extracted from text, having a collocation score assigned).

collocation context - the phrase in which the collocation (instance) occurs, i.e., where it has been extracted from.

collocation (collocation instance) - an occurrence of a collocation type in corpus. A collocation may occur several times, i.e.,
have multiple instances in the corpus.

collocations (collocation data) - collocation information (candidates extracted and ranked by a score).

collocation list - list of collocations in visualization (multiple instances included).

collocation type - a collocation seen as a lexeme pair, as opposed to a collocation instance.

collocation type list - list of collocations types in visualization (no instances).

concordance tool (for collocations) - a visualization tool that displays the source collocation context for the items of the
collocation list.

currently selected collocation - the instance currently chosen in the visualization tool, for the currently selected
collocation type.

currently selected collocation type - the collocation type selected in the collocation list of the visualization tool.
lexicalized collocation - a collocation that belongs to the parser's lexicon.

parallel corpora - corpora with versions of documents in several languages (here, Fr, En and Sp).

source context - the collocation context.

source corpus - the documents from which the collocation extraction has been done.

source file - the file from which the collocation (instance) has been extracted.

source filename (of a collocation) - the filename of the source file.

source language - the language of collocation data.

source window - the window showing the content of the source file.

subsystem - the program (the group of modules that all deal with the task described).

target context - the equivalent of the source context in the target file (obtained through alignment).

target corpus - the version of the source corpus in the target language.

target file - the version of the source file in the target lanquage.

37

target language - the language used in the alignment tool to display the target context.

target window - the window showing the content of the target file.

validate (a collocation) - add information and store the collocation entry into a validation table.

validation table - a table with collocations manually validated by the user. Table names: MonolingualCooc and BilingualCooc.

visualization tools - the concordance and alignment tools.

Back

38

1.5 Manuel du développeur -

Modules

Emplacement: Collocation/Docu/

39

40

CollocationAlign
Last updated Nov 05, 2004 (0006), Violeta.Seretan@Iatl.unige.ch

DEFINITION CollocationAlign;
IMPORT CollocationGlobal, TextModels;

PROCEDURE AlignCooc (cooc: CollocationGlobal.CoocRec; OUT posBeg, posEnd: INTEGER);
PROCEDURE GetSentenceLimits (file: TextModels.Model; crt: INTEGER; OUT sentBeg, sentEnd:
INTEGER);

END CollocationAlign.

This modules implements the procedures that determine the translation equivalent for a sentence in the source
file that represents the context of a collocation, i.e., they do the collocation contexts alignment.

PROCEDURE AlignCooc (cooc: CollocationGlobal.CoocRec; OUT posBeg, posEnd: INTEGER);

Aligns the source sentence that contains the collocation with the corresponding sentence in the target file.
First the paragraphs are aligned then the sentence inside the paragraphs.

The paragraph-level alignment method determine the initial target candidate ("pivot") using the relative
documents lengths, then look in its neighborhood for a better candidate. Two criteria are used, one content
based (relies on the matching of paragraph numbering or identification), the other length-based (relies on the
matching of relative paragraph sizes in a context).

The sentence-level alignment method does for now a simple sentence-to-sentence correspondence.

PROCEDURE GetSentenceLimits (file: TextModels.Model; crt: INTEGER; OUT sentBeg, sentEnd:

INTEGER);
Given a file and a position in that file, return the limits of the sentence around that position.

41

CollocationBrowse

Last updated Nov 05, 2004 (0015), Violeta.Seretan@latl.unige.ch

DEFINITION CollocationBrowse;
IMPORT Dialog, CollocationGlobal;

VAR
firstCooc: INTEGER,;
lastCooc: INTEGER,;
nextCooc: INTEGER,;
prevCooc: INTEGER;

PROCEDURE Computelndexes;

PROCEDURE Countlnstances (crt: INTEGER): INTEGER;

PROCEDURE CrtCoocGuard (VAR par: Dialog.Par);

PROCEDURE EqualCoocs (coocl, cooc2: CollocationGlobal.CoocRec): BOOLEAN;
PROCEDURE Findlth (index: INTEGER): INTEGER,;

PROCEDURE NbinstancesGuard (VAR par: Dialog.Par);

PROCEDURE OnCoocFirstGuard (VAR par: Dialog.Par);

PROCEDURE OnCooclastGuard (VAR par: Dialog.Par);

PROCEDURE OnCoocNextGuard (VAR par: Dialog.Par);

PROCEDURE OnCoocPrevGuard (VAR par: Dialog.Par);

END CollocationBrowse.

This modules implements the procedures of navigation through the instances of the currently selected
collocation. It allows the sequential and direct access to all instances of a collocation. It also implements
guards for the access buttons (First, Prev, Next, Last) and field (number of instance) on the associated GUIs
(Concordance.odc and Alignment.odc).

VAR firstCooc: INTEGER
The index (in the entire array of collocations) of the first instance of currently selected collocation.

VAR lastCooc: INTEGER
The index (in the entire array of collocations) of the last instance of currently selected collocation.

VAR nextCooc: INTEGER
The index (in the entire array of collocations) of the next instance of currently selected collocation.

VAR prevCooc: INTEGER
The index (in the entire array of collocations) of the previous instance of currently selected collocation.

PROCEDURE Computelndexes
Determine the indexes of the first, last, previous and next instance of the currently selected collocation.

PROCEDURE Countlnstances (crt: INTEGER): INTEGER
Return the number of instances of the currently selected collocation.

PROCEDURE CrtCoocGuard (VAR par: Dialog.Par)
Guard for the field of direct access to the instance with a given number. Shows the current instance number.

PROCEDURE EqualCoocs (coocl, cooc2: CollocationGlobal.CoocRec): BOOLEAN
Predicate that is TRUE iff the two collocations have the same keys indexes, same type and same preposition.

PROCEDURE Findlth (index: INTEGER): INTEGER
Find index-th instance of currently selected collocation. Assign it to the current collocation.

PROCEDURE NblinstancesGuard (VAR par: Dialog.Par)

42

Guard for the caption field in the interface, displays the total number of instances of the currently selected
collocation.

PROCEDURE OnCoocFirstGuard (VAR par: Dialog.Par)
Guard for the 'First' browse button. Disable it under certain conditions (no other collocation instance before;
empty collocation list; only one instance).

PROCEDURE OnCoocLastGuard (VAR par: Dialog.Par)
Guard for the 'Last' browse button. Disable it under certain conditions.

PROCEDURE OnCoocNextGuard (VAR par: Dialog.Par)
Guard for the 'Next' browse button. Disable it under certain conditions.

PROCEDURE OnCoocPrevGuard (VAR par: Dialog.Par)
Guard for the 'Prev' browse button. Disable it under certain conditions.

43

CollocationCmds

Last updated Nov 09, 2004 (0032), Violeta.Seretan@lIatl.unige.ch

DEFINITION CollocationCmds;
IMPORT Dialog;

VAR
scoreOK: BOOLEAN,;

PROCEDURE ComputeScore;

PROCEDURE FilterGuard (VAR par: Dialog.Par);
PROCEDURE FormatGuard (VAR par: Dialog.Par);
PROCEDURE OKApplyGuard (VAR par: Dialog.Par);
PROCEDURE OnCoocAlignment;

PROCEDURE OnCoocConcordance;

PROCEDURE OnDisplayOK;

PROCEDURE OnfFilter;

PROCEDURE OnFilterOK;

PROCEDURE OnSortAlph;

PROCEDURE OpenSourceFile;

PROCEDURE OpenTargetFile;

PROCEDURE SortGuard (VAR par: Dialog.Par);
PROCEDURE TargetLanguageNoatifier (op, from, to: INTEGER);

END CollocationCmds.

This module contains the main commands of the Collocation subsystem that implements the collocation
visualization (concordance and alignment tools) and validation.

VAR scoreOK: BOOLEAN
TRUE iff the collocation score computed ok.

PROCEDURE ComputeScore
Action for menu item Collocation - Compute Score. Compute the collocation score on the collocations
extracted in the current language of Fips.

PROCEDURE FilterGuard (VAR par: Dialog.Par)
Guard for button 'Filter' on the visualization forms Concordance.odc and Alignment.odc. Disable the button if
collocation data is read from an ASCII file.

PROCEDURE FormatGuard (VAR par: Dialog.Par)

PROCEDURE OKApplyGuard (VAR par: Dialog.Par)
Guard for button 'OK/Apply' on the GUI forms 'Display.odc', 'Filter.odc'. Set its label to 'Apply' if at least one
visualization tool is open (Concordance, Alignment). Set to 'OK' otherwise.

PROCEDURE OnCoocAlignment
Action for menu item Collocation - Alignment. Start the alignment tool: read collocation data, build the
collocation dialog list, open the 'Alignment.odc' dialog.

PROCEDURE OnCoocConcordance
Action for menu item Collocation - Concordance. Start the concordance tool: read collocation data, build the
collocation dialog list, open 'Concordance.odc' dialog.

PROCEDURE OnDisplayOK

Action for button 'OK' on GUI form 'Display.odc'. Save the display parameters and restart the visualization tools
that were already open.

44

PROCEDURE OnFilter
Action for menu item Collocation - Filter and for button 'Filter' on the visualization tools. Read display
parameters and open 'Filter.odc' dialog.

PROCEDURE OnFilterOK
Action for button 'OK/Apply' on the GUI form 'Filter.odc'. Save the filter parameters and restart the visualization
tools that were already open.

PROCEDURE OnSortAlph

Action for button 'Sort alphabetically' on the visualization forms. Restart the visualization tools with the
parameter 'CG.param.sort_alphabetically' set to TRUE. The current collocation table, already filtered, will be
ordered alphabetically.

PROCEDURE OpenSourceFile
Action for button 'Open source file ... ' on the visualization forms. Open the source file of the currently selected
collocation and highlight the source context.

PROCEDURE OpenTargetFile
Action for button 'Open target file ... ' on the visualization forms. Align the context of currently selected
collocation. Open the target file and display the target context.

PROCEDURE SortGuard (VAR par: Dialog.Par)
Guard for the button 'Sort Alphabetically' on the visualization forms. Disable it if the collocation data is read
from an ASCI! file, not from a table.

PROCEDURE TargetLanguageNotifier (op, from, to: INTEGER)

Notifier for the radio buttons on the visualization forms that allow to choose the target language between several
alternatives. Set the target language, align the context of currently selected collocation. Open the target
document if needed and highlight the target source context.

45

CollocationDB
Last updated Nov 10, 2004 (0033), Violeta.Seretan@Iatl.unige.ch

DEFINITION CollocationDB;
IMPORT SqIDB, Dialog, Files;

TYPE

Entry = RECORD
cooc: Dialog.String;
index1, index2, typelnt; INTEGER,;
typeStr, translation: Dialog.String;
contextl, context2: ARRAY 1000 OF CHAR,;
sourceLanguage, targetLanguage, sourceFile, targetFile: Files.Name;
posLexl, posLex2, contextPosl, contextPos2: INTEGER

END;

VAR
compte: RECORD
n: INTEGER
END;
storedl: INTEGER;
stored2: INTEGER,;

PROCEDURE Clear (VAR db: SqlDB.Database);

PROCEDURE ClearAllITemp (VAR db: SqlDB.Database);

PROCEDURE ComputeLogRatioScore (VAR db: SglDB.Database; languagelndex: INTEGER);

PROCEDURE Connect (IN name: ARRAY OF CHAR; VAR db: SqlDB.Database; OUT res: INTEGER);

PROCEDURE CoocContextInBilingualDatabase (db: SqlDB.Database; index1, index2: INTEGER; IN
sourceLanguage, targetLanguage, sourceFile, targetFile: ARRAY OF CHAR; posl, pos2: INTEGER):
BOOLEAN,;

PROCEDURE FillFcontingence (VAR db: SqlDB.Database; IN inputCoocTable: ARRAY OF CHAR);

PROCEDURE FillFcooccooc (VAR db: SqlDB.Database);

PROCEDURE FillFcoocwithkeys (VAR db: SqlDB.Database; languagelndex: INTEGER);

PROCEDURE FillFscore (VAR db: SqlDB.Database);

PROCEDURE FillFtemp (VAR db: SqiDB.Database; IN inputCoocTable: ARRAY OF CHAR);

PROCEDURE StoreBilingualEntry (e: Entry; db: SqlDB.Database; silent: BOOLEAN);

PROCEDURE StoreMonolingualEntry (e: Entry; db: SqlDB.Database; silent: BOOLEAN);

END CollocationDB.

This module contains procedures that support the interface of Collocation subsystem to the associated
database and perform SQL queries for the collocation score computation.

TYPE Entry = RECORD
cooc: Dialog.String;
index1, index2, typelnt; INTEGER,;
typeStr, translation: Dialog.String;
contextl, context2: ARRAY 1000 OF CHAR,;
sourceLanguage, targetLanguage, sourceFile, targetFile: Files.Name;
posLexl, posLex2, contextPosl, contextPos2: INTEGER
END;
Type that represents a collocation (monolingual or bilingual) to validate.

cooc: Dialog.String;
Key of the entry (a string of characters).

index1, index2: INTEGER;
Indexes of the two lexemes of the entry (as defined in the parser's lexicon).

46

typelnt: INTEGER,;
A numeric code representing the syntactic type of the entry (see CollocationGlobal.coocTypes).

typeStr: Dialog.String;
The syntactic type of the entry (as a string of characters).

translation: Dialog.String;
The translation proposed for the entry.

contextl, context2: ARRAY 1000 OF CHAR,;
Sample usage of the collocation in source and target languages, extracted from corpus.

sourcelLanguage, targetLanguage: Files.Name;
Names of source and target language of the (bilingual) entry.

sourceFile, targetFile: Files.Name;
Names of source and target files from which the contexts have been extracted.

posLexl, posLex2: INTEGER
File position of the two lexemes of the entry in the source file.

VAR compte: RECORD
n: INTEGER
END;

Variable that receives the number of rows in a table after a call table.Read.

VAR stored1, stored2: INTEGER;
Number of monolingual and bilingual entries stored at the validation of collocations.

PROCEDURE Clear (VAR db: SqiDB.Database);
Clear the following tables from the given database: f_cooc, e_cooc, s_cooc (the cooccurrences extracted).

PROCEDURE ClearAllTemp (VAR db: SqlDB.Database);
Clear all the tables used for collocation score computation.

PROCEDURE ComputeLogRatioScore (VAR db: SqlDB.Database; languagelndex: INTEGER);
Perform the computation of log likelihood collocation score for the cooccurrences extracted for a given
language. The computation uses a series of SQL queries implemented by different procedures of this module.

PROCEDURE Connect (IN name: ARRAY OF CHAR; VAR db: SqlDB.Database; OUT res: INTEGER);
Establish a connection to a database identified as a system datasource with the name 'name'.

Return a variable db that points to the database, if the connection was possible; otherwise, db is NIL.
Set res to the result of the operation: O if success, an error number if failure.

PROCEDURE CoocContextIinBilingualDatabase (db: SqIDB.Database; index1, index2: INTEGER; IN
sourceLanguage, targetLanguage, sourceFile, targetFile: ARRAY OF CHAR; posl, pos2: INTEGER):
BOOLEAN,;

Returns TRUE fff in the table BilingualCooc of the associated database another entry is found that has the
same lexeme indexes, source and target language, source and target file, and position in these files, as the
given entry.

PROCEDURE FillFcontingence (VAR db: SqlDB.Database; IN inputCoocTable: ARRAY OF CHAR);
Used for collocation score computation. Add in the table contingence of database db the values for the
contingency table for each co-occurrence: joint and marginal lexemes frequencies.

PROCEDURE FillFcooccooc (VAR db: SglDB.Database);

Used for collocation score computation. Add in the table coocooc of database db information about the number
of occurrence of each lexeme in temp table. These numbers are the marginal frequencies of lexemes.

47

PROCEDURE FillFcoocwithkeys (VAR db: SgiDB.Database; languagelndex: INTEGER);

Used for collocation score computation. Add in the table coocwithkeys of database db information about the
frequency of each co-occurrence, by counting rows in the SQL query result coocwithprep for the given
language. These numbers are the joint frequencies of lexemes.

PROCEDURE FillFscore (VAR db: SqlDB.Database);
Used for collocation score computation. Add in the table coocscore of database db thelog likelihood values for
each contingency table values (rows in table contingence).

PROCEDURE FillFtemp (VAR db: SqlDB.Database; IN inputCoocTable: ARRAY OF CHAR);
Used for collocation score computation. Add in the table temp of database db the list of lexemes from the table
given. Consider only the lexemes that are not part of a lexicalized term (collocation, compound or idiom).

PROCEDURE StoreBilingualEntry (e: Entry; db: SqlDB.Database; silent: BOOLEAN);
Given the collocation entry e, store it in the database db, in its table BilingualCooc. If silent is TRUE, do not
show the result of the operation (collocation stored or not).

PROCEDURE StoreMonolingualEntry (e: Entry; db: SgIDB.Database; silent: BOOLEAN);

Given the collocation entry e, store it in the database db, in its table MonolingualCooc. If silent is TRUE, do not
show the result of the operation (collocation stored or not).

48

CollocationDBAuUX

Last updated Nov 10, 2004 (0034), Violeta.Seretan@Iatl.unige.ch

DEFINITION CollocationDBAuX;
VAR
nbocc: INTEGER;
val: ARRAY 25 OF CHAR;
END CollocationDBAuXx.
Auxiliary module for CollocationDB module. Useful for some SQL operations during the collocation score

computation.

VAR
nbocc: INTEGER;
val: ARRAY 25 OF CHAR;

Used to add variable values to database tables using INSERT clause.

49

CollocationExe

Last updated Nov 05, 2004 (0007), Violeta.Seretan@lIatl.unige.ch

DEFINITION CollocationExe;

END CollocationExe.

This is an empty module that imports the root modules of Utils and Collocation subsystems, in order to

facilitate the creation of the final application. Root modules: UtilsEdit, UtilsCmds, CollocationCmds,
CollocationValidate, CollocationWeb.

50

CollocationFilter

Last updated Nov 05, 2004 (0050), Violeta.Seretan@latl.unige.ch
DEFINITION CollocationFilter;
IMPORT Files;

VAR
record: LexicalizedRecord;

PROCEDURE ApplyFilterOptions (OUT coocFiltered: BOOLEAN);
END CollocationFilter.
Module that deals with the filtering of extracted collocations according to the filter options defined in the GUI
form 'Filter.odc'. It mainly adds the filtered collocations to an output table in the associated database
‘CollocationGlobal.cocDB'. It finally indicated what is the name of the output table by setting the variable

'‘CollocationGlobal.coocTable' to this table's name.

VAR record: LexicalizedRecord
Exported variable used to read a record from a table.

PROCEDURE ApplyFilterOptions (OUT coocFiltered: BOOLEAN)
Apply the filter according to 'CG.coocFilterOptions' and set the name of output table.

51

CollocationGlobal

Last updated Feb 02, 2005 (0115), Violeta.Seretan@latl.unige.ch

DEFINITION CollocationGlobal;

IMPORT Dialog, Files, SqIDB, LatllO, TextMappers, TextModels, Views, TextViews, Windows;

CONST
ASCIIFile = 1;
DBInfo0 = "Cooccurrence present in database";
DBInfol = "Cooccurrence context present in database";
DBInfo2 = "Cooccurrence contexts present in database";
Database = 0;

nbTypes = 12;
nb_lang = 3;
TYPE

CooclndexRec = RECORD
index1, index2: INTEGER,
keyl, prep, key2: Dialog.String;
validated: BOOLEAN;
type: INTEGER

END;

CoocParam = RECORD
terms: Dialog.List;
crtFileName: Dialog.String;
fileSymbol: ARRAY 256 OF CHAR;
fileCollection: ARRAY 256 OF CHAR,;
sel_lang, sort: INTEGER,;
sort_alphabetically: BOOLEAN,;
instanceNb: INTEGER,;
DBInfo: ARRAY 256 OF CHAR;
markValid: BOOLEAN

END;

CoocRec = RECORD
index1, index2, type, posCharLex1, posCharLex2, posCharSentence, occ: INTEGER;
score: REAL;
keyl, prep, key2, inFile: Dialog.String;
lexicalized, validated, contextValidated: BOOLEAN
END;

FilterOptions = RECORD
type: Dialog.Selection;
freq: INTEGER;
keyl, key2: Dialog.String;
score: REAL;
max: INTEGER,

limitedNb, validOnly, includeLexicalized, includeExtracted: BOOLEAN
END;

VAR
coocArray: POINTER TO ARRAY OF CoocRec;
coocDB: SqIDB.Database;
coocDBName: Files.Name;
coocFile: LatllO.Text;
coocFilterOptions: FilterOptions;

52

cooclndexArray: POINTER TO ARRAY OF CoocIndexRec;
coocSource: INTEGER;
coocTable: Files.Name;
coocTypes: ARRAY 12 OF RECORD

str: Dialog.String;

id: INTEGER

END;

corpora_paths: ARRAY 3 OF Dialog.String;
crtCooc: INTEGER;
dataPath: ARRAY 256 OF CHAR;
f src: TextMappers.Formatter;
f trg: TextMappers.Formatter;
flagAlign: BOOLEAN;
flagSelectEach: BOOLEAN;
languages: ARRAY 3 OF ARRAY 30 OF CHAR;
nbCooc: INTEGER;
nbCoocUnique: INTEGER;
nbSameCooc: INTEGER;
ordered: BOOLEAN,;
param: CoocParam;
path: ARRAY 256 OF CHAR,;
readOK: BOOLEAN;
realCooclndex: POINTER TO ARRAY OF INTEGER,;
shortFileName: Files.Name;
sourceContextBeg: INTEGER,;
sourceContextEnd: INTEGER;
sourceFileName: Files.Name;
source_lang: INTEGER;
srcName: Files.Name;
srcViewOnForm: TextViews.View;
t_src: TextModels.Model;
t trg: TextModels.Model;
targetContextBeg: INTEGER,;
targetContextEnd: INTEGER;
targetFileName: Files.Name;
target_lang: INTEGER,;
trgName: Files.Name;
trgViewOnForm: TextViews.View;
v_src: Views.View;
v_trg: Views.View;
w_src: Windows.Window;
w_trg: Windows.Window;

PROCEDURE ClearViewsOnForm;

PROCEDURE ClearVisualizationParameters;
PROCEDURE CollectionGuard (VAR par: Dialog.Par);
PROCEDURE CoocTypeGuard (VAR par: Dialog.Par);
PROCEDURE CorporaPathsGuard (VAR par: Dialog.Par);
PROCEDURE CorpusFreqGuard (VAR par: Dialog.Par);
PROCEDURE DBInfoGuard (VAR par: Dialog.Par);
PROCEDURE FileContentGuard (VAR par: Dialog.Par);
PROCEDURE FilenameGuard (VAR par: Dialog.Par);
PROCEDURE FilterMaxGuard (VAR par: Dialog.Par);
PROCEDURE GetSourceDir (OUT dirName: Files.Name);
PROCEDURE HideGuard (VAR par: Dialog.Par);
PROCEDURE IdOfType (id: INTEGER; OUT res: INTEGER): INTEGER,;
PROCEDURE InitTypeList (OUT list: Dialog.Selection);
PROCEDURE IsValidType (id: INTEGER): BOOLEAN,;
PROCEDURE LangTargetlGuard (VAR par: Dialog.Par);
PROCEDURE LangTarget2Guard (VAR par: Dialog.Par);

53

PROCEDURE LanguageGuard (VAR par: Dialog.Par);
PROCEDURE LexicalizedGuard (VAR par: Dialog.Par);
PROCEDURE ScoreGuard (VAR par: Dialog.Par);
PROCEDURE SourceFileGuard (VAR par: Dialog.Par);
PROCEDURE SymbolGuard (VAR par: Dialog.Par);
PROCEDURE TargetFileGuard (VAR par: Dialog.Par);

END CollocationGlobal.

This module contains the main global variables used by the modules of Collocation subsystem (which basically
does the extraction of collocations from texts and the visualization of the results in parallel documents).

The variables of this module are used mostly in the visualization part. The main variables are: the list of
collocations to be displayed (coocArray), and the options for visualization (filtering options, interface variables).
Most of the procedures are GUI guards for the global variables.

Associated GUIs: Concordance.odc, Alignment.odc, Display.odc, Filter.odc.

CONST ASCIIFile
The collocations are to be read from a text file.

CONST DBInfo0 = "Cooccurrence present in database";
GUI message indicating that the collocation has been validated by the user (it is stored in the validation table,
in the associated database).

CONST DBInfol = "Cooccurrence context present in database";
GUI message indicating that the collocation and its source context have been validated by the user (it is stored
in the validation table, in the associated database).

CONST DBInfo2 = "Cooccurrence contexts present in database";
GUI message indicating that the collocation and its source and target contexts have been validated by the user
(it is stored in the validation table, in the associated database).

CONST Database = 0;
The collocations are to be read from the associated database.

CONST nbTypes = 12;
Number of syntactic types for collocations.

CONST nb_lang = 3;

Number of languages in the visualization of parallel documents. This variable is used to define the parallel
corpora paths and the target languages (according to a source language). For now, there are 3 languages for
which parallel documents are available (French, English and Spanish).

TYPE CooclndexRec = RECORD
index1, index2: INTEGER,;
keyl, prep, key2: Dialog.String;
validated: BOOLEAN;

type: INTEGER

END;

Type for representing a collocation type (as opposed to collocation instances). The collocation instances of a
type will be read each time the user selects a type in the interface dialog list.

index1: INTEGER,;
The index (in parser's lexicon) of the first key of collocation type.

index2: INTEGER,;
The index (in parser's lexicon) of the second key of collocation type.

key1: Dialog.String;

54

The string for the first key of collocation type.

prep: Dialog.String;
The string for the preposition possibly occurring in the collocation type.

key2: Dialog.String;
The string for the second key of collocation type.

validated: BOOLEAN,;
TRUE iff the collocation type belongs to the list of collocations validated by the user.

type: INTEGER
The syntactic type of collocation type. Possible values are found in the variable coocTypes.

TYPE

CoocParam = RECORD
terms: Dialog.List;
crtFileName: Dialog.String;
sourceContext: ARRAY 10010 OF CHAR,;
targetContext: ARRAY 10010 OF CHAR,;
fileSymbol: ARRAY 256 OF CHAR,;
fileCollection: ARRAY 256 OF CHAR;
sel_lang, sort: INTEGER,;
sort_alphabetically: BOOLEAN,;
instanceNb: INTEGER,;
DBInfo: ARRAY 256 OF CHAR;
markValid: BOOLEAN

END;

The type used for representing collocation data on the visualization interfaces.

terms: Dialog.List;
The dialog list containing the string for the collocations visualized (the two keys and possibly a middle
preposition).

crtFileName: Dialog.String;
The source filename of a collocation, relative to the path of the corpus to which it belongs.

fileSymbol: ARRAY 256 OF CHAR;
For the OMC corpora, an identifier of the source file. It is the value of the META attribute "SYMBOL" in the
header of file in HTML format. For other types of files, this value is empty.

fileCollection: ARRAY 20 OF CHAR;
For the OMC corpora, an identifier of the collection to which the source file belongs. It is the value of the META
attribute "COLLECTION" in the header of file in HTML format.

sel_lang: INTEGER;
The target language selected for visualization. One language at a time is used for visualization in the alignment
tool.

sort: INTEGER,;
Sort criterion for the collocation list: O - score; 1 - frequency. Used also for collocation filtering.

sort_alphabetically: BOOLEAN,;
TRUE iff the collocation list is sorted alphabetically. Not used for collocation filtering.

instanceNb: INTEGER,;

The instance number of the collocation currently showed in the visualization tool. A collocation is uniquely
listed in the collocation list but it may occur several times, i.e., have multiple instances in the corpus. See
also: nbSameCooc.

55

DBInfo: ARRAY 256 OF CHAR;
String indicating whether the currently selected collocation is in the validation table. Possible values: constants
DBInfo0, DBInfol, DBInfo2.

markValid: BOOLEAN
If TRUE, a star * will be inserted before the validated collocations in the list.

CoocRec = RECORD
index1, index2, type, posCharLex1, posCharLex2, posCharSentence, occ: INTEGER;
score: REAL,;
keyl, prep, key2, inFile: Dialog.String

END;

The type representing a collocation.

index1, index2: INTEGER;
The indexes (in the parser's lexicon) of the two collocation keys.

type: INTEGER,;
The syntactic type of a collocation. Possible values are found in the variable coocTypes.

posCharLexl, posCharLex2: INTEGER;
The (file) position of the two collocation keys in the source file.

posCharSentence: INTEGER,;
The file position of the beginning of the sentence in which occurs the collocation.

occ: INTEGER;
The number of occurrences of the collocation in the source file.

score: REAL;
The collocation score calculated by UtilsOdbcScore. The bigger the score, the more likely that the two keys
form a true collocation.

keyl, prep, key2: Dialog.String;
The collocation string: the two keys and the optional middle preposition.

inFile: Dialog.String;
The name of the source file of the collocation.

lexicalized: BOOLEAN;
TRUE iff the collocation belongs to the parser's lexicon.

validated: BOOLEAN,;
TRUE iff a collocation instance of the type index1, index2 exists in the validation table in the associated
database.

contextValidated: BOOLEAN,;
TRUE iff the same collocation instance (same index1, index2, posCharLex1, posCharLex?2) exists in the
validation table in the associated database.

TYPE FilterOptions = RECORD
type: Dialog.Selection;
freq: INTEGER;
keyl, key2: Dialog.String;
score: REAL,;
max: INTEGER,;
limitedNb, validOnly, includeLexicalized, includeExtracted: BOOLEAN
END;

The type for representing the filtering options (used in visualization).

56

type: Dialog.Selection;
Syntactic types included for visualization.

freq: INTEGER,;
Frequency threshold. Only collocation types having at list freq occurrences in the corpus will be included.

keyl, key2: Dialog.String;
Keys of collocation. Only collocation types having the given keys will be included. Allows the search for given
collocations.

score: REAL;
Score threshold. Only collocation types having at least this score will be included.

max: INTEGER,;
Number limitation. Maximum number of collocation types to be included. N.B.: it applies to collocation types,
not instances. The number of instances may be much greater.

limitedNb: BOOLEAN
TRUE iff there is a number limitation.

validOnly: BOOLEAN
If TRUE, only validated collocations will be included.

includeLexicalized: BOOLEAN
If TRUE, also the lexicalized collocations will be included. Otherwise they are not included.

includeExtracted: BOOLEAN
If TRUE, the collocations extracted will be included (default case). Otherwise they are not included.

VAR coocArray: POINTER TO ARRAY OF CoocRec;
The array of collocation instances that will be displayed (collocation list).

VAR coocFile: LatllO.Text;
The source file for the selected collocation in the list (the file where the collocation occur).

VAR coocDB: SqlDB.Database;
The database associated with the subsystem. Stores the extracted and validated collocations. Allows the
score computation and collocation filtering.

VAR coocDBName: Files.Name;
Name of the associated database.

VAR coocFile: LatllO.Text;
Input file (stores the extracted collocations).

VAR coocFilterOptions: FilterOptions;
Filtering options (shown in the GUI Filter.odc).

VAR cooclindexArray: POINTER TO ARRAY OF CooclndexRec;
The array of collocations types that will be displayed. Does not contain collocation instances.

VAR coocSource: INTEGER,;
Where the collocations are read from. Possible values: constants ASCIIFile, Database.

VAR coocTable: Files.Name;
Name of the input table, from which the collocation will be read. It changes depending on display and filtering
options.

VAR coocTypes: ARRAY 12 OF RECORD

57

str: Dialog.String;

id: INTEGER
END;
Collocations syntactic types possible: string and ID number.
Example values: "Adjective - Noun", 0 = FipsConsts.adjectiveNoun.

VAR corpora_paths: ARRAY 3 OF Dialog.String;
The paths for the parallel corpora (used for displaying target collocation context).

VAR crtCooc: LONGINT;
The index of the currently selected collocation in the collocations list coocArray.

VAR dataPath: ARRAY 256 OF CHAR;
The path to data directory (where option files are stored). It is relative to the path of the subsystem.

VAR f_src: TextMappers.Formatter;
The formatter (writer) connected to the source file of the currently selected collocation. Allows to read text from
that file.

VAR f_trg: TextMappers.Formatter;
The formatter (writer) connected to the target file of the currently selected collocation. Allows to read text from
that file.

VAR flagAlign: BOOLEAN;
TRUE if the visualization tool is the alignment tool; FALSE if it is the concordance tool.

VAR flagSelectEach: BOOLEAN;
If TRUE, work with a collocation type list instead of collocation instances. Retrieve all the instances on-the-fly
(for efficiency purpose).

VAR languages: ARRAY 3 OF ARRAY 30 OF CHAR;
The language names for the languages used (for parallel corpora): French, English and Spanish.

VAR nbCooc: LONGINT;
Total number of collocations in the collocation list.

VAR nbCoocUnique: INTEGER,;
Total number of collocation types in the collocation list (instances not counted).

VAR nbSameCooc: LONGINT;
The number of instances of the currently selected collocation type.

VAR ordered: BOOLEAN;
TRUE if the collocation data are grouped alphabetically.

VAR param: CoocParam,;
Collocation information used by the visualization interface.

VAR path: ARRAY 256 OF CHAR,;
The path to the subsystem resources (by default, the working directory: the empty string).

VAR readOK: BOOLEAN,;
TRUE iff the reading of the collocation data was ok.

VAR realCooclindex: POINTER TO ARRAY OF INTEGER,;
Hash table for collocation list. Contains indexes to the beginning of collocation instances groups, for each
collocation type in cooclist.

VAR shortFileName: Files.Name;
A (possibly shortened) version of the source filename to be displayed in the interface when the filename is too

58

long for the corresponding field.

VAR sourceContextBeg: INTEGER,;
File position of the beginning of the source context for the currently selected collocation.

VAR sourceContexteEnd: INTEGER,;
File position of the end of the source context for the currently selected collocation.

VAR sourceFileName: Files.Name;
The filename of the source file for the currently selected collocation.

VAR source_lang: INTEGER;
The source language of the collocation data. Possible values: the indexes of the array languages
(0 for French, 1 for English, 2 for Spanish).

VAR srcName: Files.Name;
The source filename for the collocation last visualized.

VAR srcViewOnForm: TextViews.View;
The text view on the GUI showing the source file content, with the source context colored and automatically
scrolled to.

VAR t_src: TextModels.Model;
The text model (file content) of the source file.

VAR t_trg: TextModels.Model;
The text model (file content) of the target file.

VAR targetContextBeg: INTEGER,;
File position of the beginning of the target context for the currently selected collocation.

VAR targetContextEnd: INTEGER;
File position of the end of the target context for the currently selected collocation.

VAR targetFileName: Files.Name;
The filename of the target file for the currently selected collocation.

VAR target_lang: INTEGER;
The target language: the language used in the alignment tool to display the target context. Possible values:
values of the array languages.

VAR trgName: Files.Name;
The target filename for the collocation last visualized.

VAR trgViewOnForm: TextViews.View;
The text view on the GUI showing the target file content, with the target context colored and automatically
scrolled to.

VAR v_src: Views.View;
The view (showed by the window) of the source file model t_src. The source context is colored and
automatically scrolled to.

VAR v_trg: Views.View;
The view (showed by the window) of the target file model t_trg. The target context is colored and automatically
scrolled to.

VAR w_src: Windows.Window;
The window displaying the source file view v_src.

VAR w_trg: Windows.Window;

59

The window displaying the target file view v_trg.

PROCEDURE ClearViewsOnForm;
Empty the source and target file views on the GUI.

PROCEDURE ClearVisualizationParameters;
Init all parameters of current collocation used on the GUI.

PROCEDURE CollectionGuard (VAR par: Dialog.Par);
Display the collection identifier on the visualization GUI (Concordance.odc and Alignment.odc)

PROCEDURE CoocTypeGuard (VAR par: Dialog.Par);
Display the syntactic type of current collocation on the GUI.

PROCEDURE CorporaPathsGuard (VAR par: Dialog.Par);
Make the option for corpora pathes read-only if the visualization tool is not the alignment tool. Interface:
'Display.odc'.

PROCEDURE CorpusFreqGuard (VAR par: Dialog.Par);
Display the frequency filter option on GUI (Filter.odc).

PROCEDURE DBInfoGuard (VAR par: Dialog.Par);
Display the validation information for the current collocation on the visualization GUI.

PROCEDURE FileContentGuard (VAR par: Dialog.Par);
Make the text field that displays context read-only. Problem: background becomes grey. Not used.

PROCEDURE FilenameGuard (VAR par: Dialog.Par);
Displays the short filename of the source file for the current collocation on the visualization GUI.

PROCEDURE FilterMaxGuard (VAR par: Dialog.Par);
Disable the control showing the maximum number of collocation in filter when there is not a number limitation.
GUI: Filter.odc.

PROCEDURE GetSourceDir (OUT dirName: Files.Name);
Set the source directory name for collocation data. In this version, the data contain the full source filenames
including path, therefore the source directory is set to the empty string.

PROCEDURE HideGuard (VAR par: Dialog.Par);
Set the label of the control to the empty string (make invisible).

PROCEDURE IdOfType (id: INTEGER; OUT res: INTEGER): INTEGER;
For the collocation syntactic type ID id, retrieve the index in the types list.

PROCEDURE InitTypeList (OUT list: Dialog.Selection);
Create the dialog list showing collocation syntactic types from the list of types typesList.

PROCEDURE IsValidType (id: INTEGER): BOOLEAN;
Return TRUE iff id is an existing syntactic type ID.

PROCEDURE LangTargetlGuard (VAR par: Dialog.Par);
Set the label of the first radio button on visualization GUI corresponding to the first target language alternative.
Disable it if the source language is undefined.

PROCEDURE LangTarget2Guard (VAR par: Dialog.Par);
Set the label of the second radio button on visualization GUI corresponding to the second target language
alternative. Disable it if the source language is undefined.

PROCEDURE LanguageGuard (VAR par: Dialog.Par);
Set read-only the source language radio buttons on the display options (Display.odc). Not used.

60

PROCEDURE LexicalizedGuard (VAR par: Dialog.Par);
Display a string in the visualization GUI indicating whether the current collocation is lexicalized (‘Collocation in
lexic") or is newly extracted (‘New collocation’).

PROCEDURE ScoreGuard (VAR par: Dialog.Par);
Displays the score of the current collocation on the visualization GUI. Only keep the first 3 decimals.

PROCEDURE SymbolGuard (VAR par: Dialog.Par);
Display the source file symbol identifier in the visualization GUI.

PROCEDURE SortGuard (VAR par: Dialog.Par);
Guard for the button on the interface that sorts the collocation list. Sets its label either to "Sort alphabetically"
or to "Sort by score", depending on the value of variable sort.

PROCEDURE SourceFileGuard (VAR par: Dialog.Par);
Disable the button 'Open source file' on the visualization GUI when no collocation is currently selected.

PROCEDURE TargetFileGuard (VAR par: Dialog.Par);
Disable the button 'Open source file' on the visualization GUI when no collocation is currently selected.

61

CollocationOptions

Last updated Nov 05, 2004 (0054), Violeta.Seretan@latl.unige.ch
DEFINITION CollocationOptions;
IMPORT CollocationGlobal;

TYPE
FilterParam = RECORD
filterOpt: CollocationGlobal.FilterOptions;
sort: INTEGER
END;

PROCEDURE ReadDisplayParam;
PROCEDURE ReadFilterParam;
PROCEDURE SaveDisplayParam;
PROCEDURE SavekFilterParam;

END CollocationOptions.

Module for saving and retrieving options of collocation subsystem. The path to options files is defined in
CollocationGlobal.dataPath.

TYPE
FilterParam = RECORD
filterOpt: CollocationGlobal.FilterOptions;
sort: INTEGER
END;

Type for collocation filtering and sorting options.

filterOpt: CollocationGlobal.FilterOptions;
Collocation filtering options.

sort: INTEGER
Collocation sorting options. Possible values: those of filed sort of type CollocationGlobal.CoocParam.

PROCEDURE ReadDisplayParam;
Read display parameters 'CollocationGlobal.param' from option file 'display.txt' file in XML format.

PROCEDURE ReadFilterParam;
Read filter parameters 'CollocationGlobal.coocFilterOptions' and ‘CollocationGlobal.param.sort' from filter.txt' file
in XML format.

PROCEDURE SaveDisplayParam;
Save display parameters 'CollocationGlobal.param' to 'display.txt' file in XML format

PROCEDURE SaveFilterParam;

Save filter parameters 'CollocationGlobal.coocFilterOptions' and 'CollocationGlobal.param.sort' to file ‘filter.txt' in
XML format.

62

CollocationRead

Last updated Nov 05, 2004 (0018), Violeta.Seretan@Iatl.unige.ch

DEFINITION CollocationRead;
IMPORT Dialog, Files, TextModels, Views, TextMappers, SqIDB, CollocationGlobal;

VAR
dbindexRec: DBCoocUniqueRec;
dbRec: DBCoocRec;
dbValidRec: DBValidRec;

PROCEDURE BuildCollocationList (OUT string: Dialog.String);

PROCEDURE ChooseFileGuard (VAR par: Dialog.Par);

PROCEDURE GetTargetDocument (IN fileNameln: Files.Name; OUT fileNameOut: Files.Name): BOOLEAN,;

PROCEDURE OnChooseFile;

PROCEDURE OpenSourceFile (path, name: Files.Name; OUT t: TextModels.Model; OUT f:
TextMappers.Formatter; OUT v: Views.View): BOOLEAN;

PROCEDURE ReadSelectedList (db: SqlDB.Database; coocTable, crtindex1, crtindex2: ARRAY OF CHAR;
OUT coocArray: POINTER TO ARRAY OF CollocationGlobal.CoocRec);

END CollocationRead.

This module implements procedures used to read the collocations data from an ASCII file or database table,
and to build the collocation dialog list.

VAR dbindexRec: DBCoocUniqueRec
Exported variable, used to receive the record read from the table with unique collocations.

VAR dbRec: DBCoocRec
Exported variable, used to receive the record read from the table with collocations (hon unique, but containing
all instances).

VAR dbValidRec: DBValidRec;
Exported variable, used to receive the record read from the table with validated collocations.

PROCEDURE BuildCollocationList (OUT string: Dialog.String)

PROCEDURE ChooseFileGuard (VAR par: Dialog.Par)
Guard for the button "Choose file..." in the GUI form 'DisplayOptions.odc'. Disable it if the collocation data will
not be read from an ASCII file.

PROCEDURE GetTargetDocument (IN fileNameln: Files.Name; OUT fileNameOut: Files.Name): BOOLEAN
Given the filename of the source document, output the name of target document (for the current target
language.

Return TRUE if the source filename is compatible with the path defined for the source corpus.

PROCEDURE OnChooseFile
Open the text file containing collocation data. Notifier for the button "Choose file..." in the GUI form
'DisplayOptions.odc'.

PROCEDURE OpenSourceFile (path, name: Files.Name; OUT t: TextModels.Model; OUT f:
TextMappers.Formatter; OUT v: Views.View): BOOLEAN
Open the file specified by the given path and name. Return the text content, an associated writer and a view.

PROCEDURE ReadSelectedList (db: SqlDB.Database; coocTable, crtindex1, crtindex2: ARRAY OF CHAR;
OUT coocArray: POINTER TO ARRAY OF CollocationGlobal.CoocRec)

Given a collocation (crtindex1, crtindex?), read all its instances into the collocation array ‘coocArray'. Called on
selection change in the collocation dialog list.

63

CollocationSelect

Last updated Nov 05, 2004 (0004), Violeta Seretan

DEFINITION CollocationSelect;
IMPORT Files, CollocationGlobal, LatllO, TextMappers, TextModels;

PROCEDURE CrtCoocNotifier (op, from, to: INTEGER);
PROCEDURE DisplaySourceFile (relativeFileName: Files.Name; cooc: CollocationGlobal.CoocRec; open:

BOOLEAN);

PROCEDURE DisplayTargetFile (relativeFileName: Files.Name; posBeg, posEnd: INTEGER; open:
BOOLEAN);

PROCEDURE GetFilelD (sourceFile: LatllO.Text; IN namelD: ARRAY OF CHAR; OUT value: ARRAY OF
CHAR);

PROCEDURE HighlightCrtCollocation (f_src: TextMappers.Formatter; t_src: TextModels.Model; cooc:
CollocationGlobal.CoocRec);

PROCEDURE Init;

PROCEDURE OnCoocBrowse (n: INTEGER);

PROCEDURE OnCoocSel (op, from, to: INTEGER);

END CollocationSelect.

This module implements the actions which are executed when a collocation instance has been selected for
visualization. These actions are triggered by the elements of associated GUIs (Concordance.odc,
Alignment.odc). Examples: selection of a collocation in the list (when its first instance is actually selected);
selection of another instance of it with the buttons of browse (First, Prev, Next, Last); selection by entering the
instance number. The action to perform consists mainly in displaying the source context and updating the
information on the current collocation (file name, file symbol, file collection).

PROCEDURE CrtCoocNotifier (op, from, to: INTEGER)
Notifier for the field indicating the current number of instance for the selected collocation. Access collocation
instance by the number given and perform the main action on selection changed.

PROCEDURE DisplaySourceFile (relativeFileName: Files.Name; cooc: CollocationGlobal.CoocRec; open:
BOOLEAN);

Display the collocation context: locate the phrase containing the current collocation instance ‘cooc’, and color it
while highlighting the collocation keys (bold font face). The content of the source file is automatically scrolled to
this phrase. If open is TRUE, open the source file in a window.

PROCEDURE DisplayTargetFile (relativeFileName: Files.Name; posBeg, posEnd: INTEGER; open:
BOOLEAN)

Find the target document in the selected target language (by using the paths defined for the parallel corpora).
Color the span between 'posBeg' and 'posEnd' (the target context) and scroll the file content to it. IF open is
TRUE, open the document in a target window.

PROCEDURE GetFilelD (sourceFile: LatllO.Text; IN namelD: ARRAY OF CHAR; OUT value: ARRAY OF
CHAR)

Given the name 'namelD' of a META tag attribute in the file 'sourceFile’, return the attribute's value. If the file is
not in HTML format, the returned value is empty. The attributes are used in the header of WTO files in order to
identify files.

PROCEDURE HighlightCrtCollocation (f_src: TextMappers.Formatter; t_src: TextModels.Model; cooc:
CollocationGlobal.CoocRec)
Highlight the collocation keys in the source document (bold font face).

PROCEDURE Init
Initialize program's variables related to the last selection.

64

PROCEDURE OnCoocBrowse (n: INTEGER)

Action to perform on click on collocations navigation buttons (First, Previous, Next, Last) in the visualization
interfaces (Concordance.odc, Alignment.odc). Update the current instance number and perform the main action
on selection changed.

PROCEDURE OnCoocSel (op, from, to: INTEGER)
Action to perform on selection change in the collocations list (main action on selection changed).

65

CollocationValidate

Last updated Nov 05, 2004 (0055), Violeta.Seretan@latl.unige.ch
DEFINITION CollocationValidate;
IMPORT Dialog, Files;

TYPE

Term = RECORD
string, type, translationl, targetLanguagel, translation2, targetLanguage2: Dialog.String;
sampleContext, targetContextl, targetContext2: ARRAY 1000 OF CHAR,;
sourceFile, targetFilel, targetFile2: Files.Name;
keyl, key2: Dialog.String;
addTranslationl, addTranslation2: BOOLEAN

END;

VAR
entry: Term;
param: RECORD
validatedList: Dialog.Selection
END;

PROCEDURE AddTranslation1Guard (VAR par: Dialog.Par);
PROCEDURE AddTranslation2Guard (VAR par: Dialog.Par);
PROCEDURE DeleteAll;

PROCEDURE DeleteSelected,;

PROCEDURE OnEntryChanged (op, from, to: INTEGER);
PROCEDURE OnValidate;

PROCEDURE OnValidateAll;

PROCEDURE OnValidateSelected,;

PROCEDURE OnValidatedChange (op, from, to: INTEGER);
PROCEDURE TherelsSelectionGuard (VAR par: Dialog.Par);
PROCEDURE ValidateAllGuard (VAR par: Dialog.Par);
PROCEDURE ValidateGuard (VAR par: Dialog.Par);

END CollocationValidate.

This module contains procedures used for building a database of collocation terminology by manually validating
collocations from the concordance/alignment tools. Its main function is to allow the interaction between the
visualization tools and the database:

- entry collocation details, store collocation entries, check if an entry is already stored;

- perform operations with the terms in the validation list.

Associated GUI form: 'Validate.odc'.

TYPE

Term = RECORD
string, type, translationl, targetLanguagel, translation2, targetLanguage2: Dialog.String;
sampleContext, targetContextl, targetContext2: ARRAY 1000 OF CHAR,;
sourceFile, targetFilel, targetFile2: Files.Name;
keyl, key2: Dialog.String;
addTranslationl, addTranslation2: BOOLEAN

END;

Holds information about the terms to validate. Part of this information is added automatically and the rest is to
be added by the user. The term will be converted into two entries corresponding to the two target languages.

string: Dialog.String;
Term key, as a string.

66

type: Dialog.String;
Term syntactic type, as a string.

translationl: Dialog.String;
The translation of term in the first target language.

targetLanguagel: Dialog.String;
The name of the first target language. Possible values: that of CollocationGlobal.languages.

translation2: Dialog.String;
The translation of term in the second target language.

targetLanguage?2: Dialog.String;
The name of the second target language. Possible values: that of CollocationGlobal.languages.

sampleContext: ARRAY 1000 OF CHAR;
Sample context of term use in the source language. Default value: the term source context (phrase).

targetContextl: ARRAY 1000 OF CHAR,;
Sample context of term use in the first target language. Default value: target context in the first target file.

targetContext2: ARRAY 1000 OF CHAR,;
Sample context of term use in the second target language. Default value: target context in the second target
file.

sourceFile: Files.Name;
The full name of the source file of term (the file from which it has been extracted).

targetFilel: Files.Name;
The full name of the target file of term, for the first target language.

targetFile2: Files.Name;
The full name of the target file of term, for the second target language.

key1:Dialog.String;
The key of the first lexeme of term.

key2: Dialog.String;
The key of the second lexeme of term.

addTranslation1l: BOOLEAN
If TRUE, the translation and sample context for the first target language will be stored in the validation list.

addTranslation2: BOOLEAN
If TRUE, the translation and sample context for the second target language will be stored in the validation list.

VAR entry: Term;
Interactor interface-program (validation entry on the associated GUI form). Holds information about the term to
validate that is currently selected in the validation list.

VAR param: RECORD

validatedList: Dialog.Selection
END;
A dialog list containing terms to validate.

PROCEDURE AddTranslation1Guard (VAR par: Dialog.Par);
Guard for the radio button of the first target language. Check the button if a translation is added for the
corresponding language in the validation entry on the associated GUI form.

PROCEDURE AddTranslation2Guard (VAR par: Dialog.Par);

67

Guard for the radio button of the second target language. Check the button if a translation is added for the
corresponding language in the validation entry on the associated GUI form.

PROCEDURE DeleteAll;
Action for the button 'Delete All' on the associated GUI form. Empty the validation dialog list on the associated
GUI form.

PROCEDURE DeleteSelected;
Action for button 'Delete Selected' on the associated GUI form. Delete the selected items from the validation
dialog list. Select the first remaining item, if any.

PROCEDURE OnEntryChanged (op, from, to: INTEGER);
Notifier for the validation entry on the associated GUI form. If any of the entry fields changed, update the current
entry in the validation list.

PROCEDURE OnValidate;

Action for click on button 'Validate..." on the visualization forms. Open the validation form 'Validate.odc'. Add a
new entry (corresponding to the term to validate) to the validation entry list, and to the validation dialog list.
Select it in the dialog list.

PROCEDURE OnValidateAll;

Action for button 'Validate All' on the associated GUI form. Iterate the validation entry list, create two terms per
entry (corresponding to the two target languages) and store them into the database. Report the number of
entries stored.

PROCEDURE OnValidateSelected:;
Action for the button "Validate Selected' on the associated GUI form. Store the selected terms into the
database. Report the number of entries stored.

PROCEDURE OnValidatedChange (op, from, to: INTEGER);
Notifier for the validation dialog list on the associated GUI form. When a new item is included into the selection,
assign the entry that correspond to this item to the validation entry on the associated GUI form.

PROCEDURE TherelsSelectionGuard (VAR par: Dialog.Par);
Guard for buttons 'Validate Selected' and 'Delete Selected' on the associated GUI form. Disable the button if
there is no item selected on the validation dialog list.

PROCEDURE ValidateAllGuard (VAR par: Dialog.Par);
Guard for buttons "Validate All' and 'Delete All' on the associated GUI form. Disable the buttons if the validation
dialog list is empty.

PROCEDURE ValidateGuard (VAR par: Dialog.Par);

Guard for button 'Validate...' on the visualization forms. Disable button if the collocation dialog list on the
visualization tools is empty.

68

CollocationWeb
Last updated Nov 16, 2004 (0059), Violeta.Seretan@Iatl.unige.ch

DEFINITION CollocationWeb;
IMPORT Dialog;

VAR

Clientinfo: RECORD
clientkey: Dialog.String

END;

GUI: RECORD
keys: Dialog.String;
nbRes: INTEGER

END;

PROCEDURE DateTest;

PROCEDURE Do;

PROCEDURE DoFromDownloaded;
PROCEDURE DoFromDownloadedNoClean;
PROCEDURE DoFromFile;

PROCEDURE LoadFile;

END CollocationWeb.

This module implements procedures that allow to extract collocation from the web by parsing the google query
results. A query is executed with Google API by calling an exernal bat comand file. The results received are
stored in a file, that is later cleaned (improper snippets, that are empty or do not containg the search word, are
skipped), then parsed. Finally the score computation takes place, and the visualization that uses the
concordance tool of Collocation subsystem. Before each processing (word or list of words) the previous results
are removed from the associated database.

VAR ClientIinfo: RECORD
clientkey: Dialog.String
END;
Google API client information. Contains a Google API client key that can be obtained by the user from Google
website. The access to automatic querying is limited to 1000 queries/client/day.

VAR GUI: RECORD
keys: Dialog.String;
nbRes: INTEGER
END;
Interactor program-interface.

keys: Dialog.String;
The search key(s). One or more words.

nbRes: INTEGER
How many snippets to retrieve from Google as query results. Can be between 10 and 1000. Results are got in
blocks of 10. Not more than 1000 results can be retrieved from a query (Google limitation).

PROCEDURE Do;
Validate interface user input, get the results from Google, clean and parse results, open concordance tool.

PROCEDURE DoFromDownloaded;

Access results previously retrieved. Clean and parse them, then open concordance tool. Results are found by
specifying the search word and the results number.

69

PROCEDURE DoFromDownloadedNoClean;
Same as DoFromDownloaded, without cleaning the results.

PROCEDURE DoFromFile;
Perform the search procedure for a number of words stored in a file (each word on a separate line).

PROCEDURE LoadFile;
Set the file that specifies the list of words to process.

70

2. Sous-systeme

UTILS

Emplacement : sources/project/Utils

72

2.1 Index dela documentation

Emplacement: Utils/Docu/Sys-Map.odc

73

74

Part of Projet RUIG-GIAN, 2002-2003

Utils -

Selection and processing of multiple files

Violeta Seretan
LATL, Violeta.Seretan@Ilatl.unige.ch

User Manual
Developper Manual

Modules: UtilsCmds, UtilsProcessFiles, UtilsScan, UtilsFileTree, UtilsOptions, UtilsFunctions

Sources: UtilsCmds, UtilsProcessFiles, UtilsScan, UtilsFileTree, UtilsOptions, UtilsFunctions

Interface: Open interface

75

76

2.2 Manuel de l'utilisateur

Emplacement: Utils/Docu/User-Man.odc

7

78

V.Seretan, Violeta.Seretan@lettres.unige.ch

Utils - Selection and processing of multiple files

December, 2004

User Manual

Contents

Overview
Interface

1. how to choose a folder with the files to be processed;

2. how to apply an automatic filter on the files contained by this folder;

3. how to further apply a manual selection of the files to be processed;

4. how to choose the folder in which the results will be stored;

5. how to set the processing parameters.

See also: Developper Manual, Subystem Map

Overview
This document explains how to use the interface for multiple files selection and processing. This interface allows the user to

select a collection of files situated in a source folder, according to several filters (mainly, the file location, name, type, and
date). Then, the interface allows to process the selected files with a processor (some

Back

Interface
The rest of the document provide explanations for :
1. How to choose a folder with the files to be processed

The input folder can be chosen either by:
- typing in the edit field the complete path of the folder;
- browsing the file structure on a disk drive.

Figure 1. Input Folder

Back

79

2. How to apply an automatic filter on the files contained by this folder
The content of the input folder (the files) can be restricted using several criteria:

- the file contains a specific string in its name
To use this filter, type a string in the text field "include only files named".

- the file has a specific type
To select only files of a desired type, fill in the field "include only files of types" with the desired file extension.
Then click on the button "Add" close to this field. You can repeat the procedure to specify other types.
Note: The supported file formats are:
ASCII and Unicode files (e.g. txt, htm, html)
ODC files (BlackBox specific file format)
rtf files (rich text format from word processors like MS Word)
UTF-8 (extension utf8)

- the file is contained in the root of the input folder or in one of its subfolders.
To select all the files in the input folder, check the option "include files from subfolders".
To select only the files in the root of the input folder, uncheck this options.

- the file is (not) contained in a subfolder with a specific name
To exclude the files contained in specific folders, check the option 'exclude files from folders named'
and add the names of the folders to be excluded in the list below it. To add a folder name for exclusion,
type it in the list header and click on the button 'Add folder name'. All the folder names added to this list
will be used for files filtering.
Note: Default value for this list: the folders named "Log" (output by the collocation extraction).

- the file has been last modified at a specific date
To apply a filter on the date of files last modification (includes creations), check the box
‘include only files created/modified'. Then specify if the system should verify that the file was modified
several days previously to the current date, or in a given days interval. To do that, choose either
the radio button "in the last ... days" and enter the desired number of days, or the radio button
"between ... and ...", and specify two dates.
To specify the start limit, enter a date in the format DD-MM-YY in the field next to "between".
To specify the end limit, enter it in the field next to "and".
The default values that are proposed are between yesterday and today.

Figure 2. Automatic Files Filter

Back

3. How to further apply a manual selection of the files to be processed

The content of the input folder is filtered according to the automatic filter and is shown in a list, from which
the user can manually choose which items (files or subfolders) to be processed.

To include or exclude items, use the buttons "Check All", "Uncheck All", "Invert" or use the mouse in
combination with the keys Ctrl or Shift.

Figure 3. Manual Files Selection

Back

4. How to choose the folder in which the results will be stored

As in 1, either type the name of the folder directly or browse the disk structure.
If the folder name does not exist on the disk, it will be created when the output is produced.

80

Note: The result files will be written in the output folder, and they will be gathered in a folder
having the same name as the folder containing the input files.

Figure 4. Output Folder

Back

5. How to set the processing parameters

The parameters currently implemented concern the following implemented processors:
parsing and collocation extraction.

Parsing parameters:
- language (English and French are supported for now) - must be set;
- others - may keep the default values (max alt 10, shallow parsing checked, filtering checked,
output structure unchecked).

Extraction parameters:
- where to store the collocations extracted: text file or database.
By storing collocations in a text file, some functionalities will not be available (collocation score
computation, corpus frequency count, filtering, ordering).

Output of processors
For both parsing and extraction, additional files are produced that concern the global statistics
for a processing session (globalStat.txt) and Log files. If the parameter output structure is selected,
then files containing syntactic analyses are produced.
The parameters save results in one file and results file per file decide if the results are cumulated
for all the files or are saved separately, file per file. In the last case, a mirror copy of the input
folder's structure is created in the output folder.

The parameter text files format decide which type the results files will have: txt or odc
(BlackBox internal format).

Figure 5. Processing Parameters

Back

81

82

2.3 Manuel du developpeur

Emplacement: Utils/Docu/Dev-Man.odc

83

84

V.Seretan, Violeta.Seretan@lettres.unige.ch

Utils Subsystem

Developper Manual

November, 2004

Contents

Overview
Architecture
Compilation

Open the interface
How to develop it

Terminology
Comments

See also: User Manual, Subystem Map

Overview

This document describes the Utils subsystem, a collection of modules that allow to select a list of files (using
an interface) according to multiple filtering options, then to process these files (the processors connected now
are the Fips Parser, Fips Term Extractor, and Its Translator).

Other processors (of a file given by its full name) can be easily added (see How to develop it).

Back

Architecture

The relationship between the Utils modules is depicted below (the directed arrow means the module at the
arrow source imports, i.e., uses, depends on, the module at the target).

85

UtilsCmds contains the main interface procedures of the system (GUI guards, notifiers for the associated GUI
'Select.odc’; menu commands such as OnParse, OnTermExtractor etc.).

UtilsProcessFiles controls the execution of the process selected by UtilsCmds on the list of selected files. This
list is set according to the parameters in UtilsScan.

UtilsScan implements the scanning of folder's structure and the application of different filters on files (automatic
or manual). UtilsScan uses UtilsFileTree for operations with dialog trees displaying folder's structure.

UtilsOptions is used to store and retrieve parameters of UtilsScan.

UtilsFunctions contains procedures of general use, such as operations with files and strings of characters.

Back
Compilation
To compile:

=
° DevCompiler.CompileThis
UtilsFunctions UtilsOptions UtilsFileTree UtilsScan UtilsProcessFiles UtilsCmds

o

Back

Open the interface
Use the command below to open the interface of multiple files selection:

0"Stdeds.OpenTooIDialog('UtiIs/Rsrc/SeIect.odc', ‘Multiple files selection’)"

Back

How to develop it

86

To retrieve the list of files selected:
Use exported variable UtilsProcessFiles.filelist of type UtilsProcessFiles.DocNames, described below:

DynString* = POINTER TO ARRAY OF CHAR.
DocNames* = POINTER TO RECORD

path*: DynString;

name*: DynString;

next*: DocNames
END;

Then traverse the list and process each file using your own processor, like below:

PROCEDURE ParcourslListe;
VAR liste: UtilsScan.DocNames;
BEGIN
UtilsProcessFiles.SetFileList;
liste := UtilsProcesskFiles.filelist;
(* retrieve the list of selected files *)
WHILE liste # NIL DO
YourOwnProcessor.ProcessFile(liste.path"$ + liste.name”$);
liste := liste.next END;
END;
END ParcoursListe;

Optionally, you can edit the associated GUI ('Select.odc’) and add a command button linked to the previous
procedure (‘ParcoursListe’).

To open the form, see Open the interface.

Back

Terminology

The following terms (explained below) are often used in the documentation of modules of Utils subsystem.
associated GUI - the interface form 'Select.odc’;

dialog tree - the files tree;

(file) content list - the list that shows the content of source directory (the first level) for manual selection;
file list - files selection;

(files) selection - the list of files selected with the file selection interface;

file selection interface - the associated GUI interface;

files tree - a dialog tree displaying the file structure of a directory;

processing button - the button on the associated GUI that process selected files;

processing - the action performed on the files selection;

processor - the processing to perform on the files selection, for instance: parsing, collocation extraction,
translation);

selected files - files in selection;
selection parameters - the parameters used to make the files selection;

source directory - the directory (local or remote, on the network) that contains the files for selection;

87

target directory - the directory in which the results of processing will be stored.

Back

Comments

- Strange display of the dialog file tree

The subsystem currently displays the content of the source folder in a on-the-fly fashion. It builds up the dialog
file tree as the user clicks on a subfolder, not all in once at the beginning (this would have taken many minutes
on big drives). As an inconvenient, the display is a bit "weird", because of some automatic scrolling which is
performed in order to re-display the modified tree.

To change the way the folder's content is displayed to the classical mode (in which the whole tree is build up at
the beginning), set the variable UtilsFileTree.expandOnTheFly to FALSE.

Back

88

2.4 Manuel du développeur -

Modules

Emplacement: Utils/Docu/

89

90

UtilsCmds

Last updated Dec 10, 2004 (0290), Violeta.Seretan@Ilatl.unige.ch

DEFINITION UtilsCmds;
IMPORT Dialog, StdTabViews;

PROCEDURE FilesActionGuard (VAR par: Dialog.Par);
PROCEDURE OnAdvancedOptions;

PROCEDURE OnFileNamesDisplay;

PROCEDURE OnFilesAction;

PROCEDURE OnParse;

PROCEDURE OnTermExtractor;

PROCEDURE OnTranslate;

PROCEDURE OutputDatabaseGuard (VAR par: Dialog.Par);
PROCEDURE SelectionCountNotifier (op, from, to: INTEGER);
PROCEDURE TabNotifier (tv: StdTabViews.View; from, to: INTEGER);
PROCEDURE TitleGuard (VAR par: Dialog.Par);

END UtilsCmds.
This module contains the GUI procedures for Utils subsystem. Associated GUI: 'Select.odc'.

PROCEDURE FilesActionGuard (VAR par: Dialog.Par);
Guard for processing button. Set its label as prepared in pre-set. If the processing is running, set the label to
"Stop".

PROCEDURE OnAdvancedOptions;
Action for click on button "Advanced...", section Parse Options (tab Process Files) on the associated GUI.
Save parser parameters and open the parser options form.

PROCEDURE OnFileNamesDisplay;
Action for the button "See file list". Save all options and display the names of files in the selection in the Log
window. If there are too many files, only display their number.

PROCEDURE OnFilesAction;

Action for processing button. Save all parameters. Apply the file selection according to the selection
parameters. Set the processor according to the button's label. Process the file list, but if the processing is
already running, then stop it.

PROCEDURE OnParse;
Action for a menu item. Pre-set the label of processing button to "Parse files".

PROCEDURE OnTermExtractor;
Action for a menu item. Pre-set the label of processing button to "Extract Collocations".
Set some parsing parameters for term extraction.

PROCEDURE OnTranslate;
Action for a menu item. Pre-set the label of processing button processor to "Translate".

PROCEDURE OutputDatabaseGuard (VAR par: Dialog.Par);
Guard for the radio buttons in the section "Save Results" (tab Process Files) on the associated form.
Disable buttons if the processor is not collocation extraction.

PROCEDURE SelectionCountNotifier (op, from, to: INTEGER);

Display the selection information each time a new item from the content list is included/excluded in the
selection.

91

PROCEDURE TabNotifier (tv: StdTabViews.View; from, to: INTEGER);

Action for tab changing in the associated GUI. If the tab 'Input Folder' is opened, then browse the source
directory. If the tab 'Output Folder' is opened, browse the target directory. If the tab 'Files Filter' is quit, apply
the filter on the content list.

PROCEDURE TitleGuard (VAR par: Dialog.Par);
Guard for caption field on the associated form. Set the label depending on the processor.

92

UtilsFileTree
Last updated Dec 10, 2004 (0039), Violeta.Seretan@Ilatl.unige.ch

DEFINITION UtilsFileTree;
IMPORT Dialog;

CONST
excludeFiles = TRUE;
includeFiles = FALSE;

TYPE
Mask = POINTER TO ARRAY OF BOOLEAN,;

DIg = RECORD
path: Dialog.String;
tree: Dialog.Tree;
mask: Mask

END;

VAR
expandOnTheFly: BOOLEAN;

PROCEDURE BuildTree (VAR dlg: Dlg; includeFiles: BOOLEAN);

PROCEDURE CopyMask (VAR source, target: Mask);

PROCEDURE DifferentMasks (VAR tree: Dialog.Tree; maskl, mask2: Mask; OUT node: Dialog.TreeNode):
BOOLEAN,;

PROCEDURE Empty (VAR dig: Dlg);

PROCEDURE ExpandLevels (VAR dlig: DIg);

PROCEDURE GetDifferentNode (VAR tree: Dialog.Tree; number: INTEGER; OUT foundNode:
Dialog.TreeNode);

PROCEDURE GetExpMask (VAR tree: Dialog.Tree; OUT mask: Mask);

PROCEDURE GetPath (VAR dlg: DIg; VAR path: Dialog.String);

PROCEDURE WriteMask (mask: Mask);

END UtilsFileTree.

This module implements operations on the dialog tree representing a directory file structure: create, delete, get
the directory path, creation by expansion (on-the-fly, i.e., create its substructure on the next level as the user
clicks on a subdirectory node).

The implementation is rooted in the module ObxFileTree.

CONST excludeFiles = TRUE;
Possible value for the parameter includeFiles in BuildTree procedure. If used, the files in the directory will not be
added to the dialogue tree.

CONST includeFiles = FALSE;
Possible value for the parameter includeFiles in BuildTree procedure. If used, the files in the directory will be
added to the dialogue tree.

TYPE Mask = POINTER TO ARRAY OF BOOLEAN;
An array with the expanded values for each node in the dialog tree that contains the files.

TYPE Dlg = RECORD
path: Dialog.String;
tree: Dialog.Tree;
mask: Mask
END;
Type for a dialog tree displaying files.

93

path: Dialog.String;
The directory path.

tree: Dialog.Tree;
The tree dialog.

mask: Mask
The expansion mask of the dialog tree.

VAR expandOnTheFly: BOOLEAN,;
Display parameter, which is TRUE if the files tree is to be expanded on user click; FALSE if completed at the
beginning

PROCEDURE BuildTree (VAR dig: Dlg; includeFiles: BOOLEAN);
Build the dialog tree representing the structure of the directory given by dlg.path.

PROCEDURE CopyMask (VAR source, target: Mask);
Copy the expansion mask from source to target.

PROCEDURE DifferentMasks (VAR tree: Dialog.Tree; maskl, mask2: Mask; OUT node: Dialog.TreeNode):
BOOLEAN,;
Compare two node lists and return TRUE iff they are different; in this case, node is the first node that differs.

PROCEDURE Empty (VAR dig: Dlg);
Clears the dialog tree.

PROCEDURE ExpandLevels (VAR dlg: DIg);
Browse the tree and add the next levels to all the nodes expanded by the user.

PROCEDURE GetDifferentNode (VAR tree: Dialog.Tree; number: INTEGER; OUT foundNode:
Dialog.TreeNode);

Return the node in the dialog tree having the given number. The preorder is considered:

parent - first children - ... - last children.

PROCEDURE GetExpMask (VAR tree: Dialog.Tree; OUT mask: Mask);
Create a list representing the expansion mask of all the nodes in a dialog tree.

PROCEDURE GetPath (VAR dlg: Dlg; VAR path: Dialog.String);
Retrieve the path of the node selected in the file tree dialog.

PROCEDURE WriteMask (mask: Mask);
Print to Log window an expansion mask.

94

UtilsFunctions
Last updated Dec 10, 2004 (0279), Violeta.Seretan@Ilatl.unige.ch

DEFINITION UtilsFunctions;
IMPORT Dialog, Files, TextModels, Views, Dates, Windows, TextViews;

PROCEDURE ClearTags (inText: ARRAY OF CHAR; OUT outText: ARRAY OF CHAR);

PROCEDURE CommentSel;

PROCEDURE ControlChar (ch: CHAR): BOOLEAN,;

PROCEDURE CountSelected (VAR list: Dialog.Selection): INTEGER,;

PROCEDURE DeleteFile (filename: Files.Name);

PROCEDURE DetectSourceLanguage (): INTEGER,;

PROCEDURE ExtractFilePathName (IN fileName: Files.Name; OUT path, name: Files.Name);

PROCEDURE ExtractSpan (file: TextModels.Model; beg, end: INTEGER; VAR span: ARRAY OF CHAR,;
maxlen: INTEGER);

PROCEDURE FileCreatedAfter (filename: Files.Name; date: Dates.Date; time: Dates.Time): BOOLEAN,;

PROCEDURE FileExists (filename: Files.Name): BOOLEAN;

PROCEDURE FindInPath (fileName, string: ARRAY OF CHAR): INTEGER;

PROCEDURE FindWindow (title: ARRAY OF CHAR): BOOLEAN;

PROCEDURE FipsOptionsSetUp;

PROCEDURE GetCharOrd;

PROCEDURE GetDriveLetter (IN dir: ARRAY OF CHAR): CHAR;

PROCEDURE GetFileModel (IN fleName: ARRAY OF CHAR; OUT text: TextModels.Model);

PROCEDURE GetFileSize (IN fileName: Files.Name): INTEGER;

PROCEDURE GetSelection (OUT out: POINTER TO ARRAY OF CHAR);

PROCEDURE GetStringFromModel (model: TextModels.Model; OUT string: POINTER TO ARRAY OF
CHAR);

PROCEDURE HasExtension (IN filename: Files.Name): BOOLEAN;

PROCEDURE HasNumbering (IN string: Dialog.String): BOOLEAN;

PROCEDURE HasSubDirs (IN dir: ARRAY OF CHAR): BOOLEAN;

PROCEDURE InsertLogString;

PROCEDURE InsertProcHeader;

PROCEDURE IsDash (ch: CHAR): BOOLEAN;

PROCEDURE IsDigit (ch: CHAR): BOOLEAN;

PROCEDURE IsLetter (ch: CHAR): BOOLEAN,;

PROCEDURE IsPunctuation (ch: CHAR): BOOLEAN,;

PROCEDURE IsSpace (ch: CHAR): BOOLEAN,;

PROCEDURE NewSentence (file: TextModels.Model; pos: INTEGER): BOOLEAN;

PROCEDURE OpenView (v: Views.View; loc: Files.Locator; IN name: Files.Name; OUT w:
Windows.Window);

PROCEDURE ParentDirectory (IN dir: ARRAY OF CHAR; OUT parentDir: ARRAY OF CHAR);

PROCEDURE PathToFileSpec (IN fileName: ARRAY OF CHAR; OUT loc: Files.Locator; OUT name:
Files.Name);

PROCEDURE ReadListFromFile (IN filename: Files.Name; OUT list: POINTER TO ARRAY OF INTEGER);

PROCEDURE ReadString (t: TextModels.Model; startPos: INTEGER; OUT endPos: INTEGER; OUT str:
Dialog.String);

PROCEDURE ReadWord (t: TextModels.Model; min_len, startPos: INTEGER; OUT endPos: INTEGER;
OUT word: Dialog.String);

PROCEDURE Register (model: TextModels.Model; fleName: Files.Name; IN format: ARRAY OF CHAR);

PROCEDURE ReplaceQuotes (VAR str: ARRAY OF CHAR);

PROCEDURE RetrieveSrcView (OUT textView: TextViews.View);

PROCEDURE RetrieveTrgView (OUT textView: TextViews.View);

PROCEDURE ShortenFileName (IN filename: ARRAY OF CHAR; desiredLength: INTEGER; OUT
newFilename: ARRAY OF CHAR);

PROCEDURE ShowWindowsNames;

PROCEDURE Trim (VAR input: ARRAY OF CHAR,; trimList: ARRAY OF CHAR);

PROCEDURE UndoReplaceQuotes (VAR str: ARRAY OF CHAR);

PROCEDURE ValidWordChar (ch: CHAR): BOOLEAN,;

95

PROCEDURE ValidatePath (path: Files.Name): BOOLEAN,;
PROCEDURE WorkingDirectory (IN dir: ARRAY OF CHAR; OUT wrkDir: ARRAY OF CHARY);
PROCEDURE WriteCursorPaosition;

END UtilsFunctions.
This module consist of procedures of general use, mainly operations with files and strings.

PROCEDURE ClearTags (inText: ARRAY OF CHAR; OUT outText: ARRAY OF CHAR);
Given the text inText, return its version in which the tags were stripped.

PROCEDURE CommentSel;
Add comment marks arround the text in the current selection; make the selection italic.

PROCEDURE ControlChar (ch: CHAR): BOOLEAN;
Return TRUE iff the character ch is a control character.

PROCEDURE CountSelected (VAR list: Dialog.Selection): INTEGER;
Return the number of the items which were selected in a dialog list.

PROCEDURE DeleteFile (filename: Files.Name);
Delete the specified file.

PROCEDURE DetectSourceLanguage (): INTEGER;
Return the language of Fips parser: an integer code defined in FipsLexTools.

PROCEDURE ExtractFilePathName (IN fileName: Files.Name; OUT path, name: Files.Name);
Extract path and file name from a complete filename.

PROCEDURE ExtractSpan (file: TextModels.Model; beg, end: INTEGER; VAR span: ARRAY OF CHAR,;
maxlen; INTEGER);
Extract from file the text span that is between the indicated limits. Allow only a given maximal length.

PROCEDURE FileCreatedAfter (filename: Files.Name; date: Dates.Date; time: Dates.Time): BOOLEAN;
Checks whether the file modification date is after the specified date and time.

PROCEDURE FileExists (filename: Files.Name): BOOLEAN,;
Checks whether the specified file exists.

PROCEDURE FindInPath (fleName, string: ARRAY OF CHAR): INTEGER;
Return the position of occurrence of the desired string in the given filename.

PROCEDURE FindWindow (title: ARRAY OF CHAR): BOOLEAN,;
Return TRUE iff the window with the given title (name) is currently opened in the system.

PROCEDURE FipsOptionsSetUp;
Default settings for Fips parser options. May be distribution - dependent.

PROCEDURE GetCharOrd;
Print to the Log window the numeric codes of characters in the current text selection.

PROCEDURE GetDriveLetter (IN dir: ARRAY OF CHAR): CHAR;
Given a directory path, return the drive letter if there is one in the path, and a blank space otherwise.

PROCEDURE GetFileModel (IN fileName: ARRAY OF CHAR; OUT text: TextModels.Model);
Return the model (the data) of a text file specified by its complete filename.

PROCEDURE GetFileSize (IN fileName: Files.Name): INTEGER,;
Return the size (in characters) of the file specified.

96

PROCEDURE GetSelection (OUT out: POINTER TO ARRAY OF CHAR);
Get the text that is currently selected in the system.

PROCEDURE GetStringFromModel (model: TextModels.Model; OUT string: POINTER TO ARRAY OF
CHAR);
Convert a model to a string. The inverse operation for TextModels.NewFromString.

PROCEDURE HasExtension (IN filename: Files.Name): BOOLEAN;
Return TRUE iff a full stop is found after the first position in string and it is followed by a letter.

PROCEDURE HasNumbering (IN string: Dialog.String): BOOLEAN;
Return TRUE if the string represents a paragraph numbering, e.g., after stripping of period and parentheses, it
is on the form: 0-9, a-z, {i|v|x|l|c|d]m].

PROCEDURE HasSubDirs (IN dir: ARRAY OF CHAR): BOOLEAN,;
Return TRUE iff the given directory contains at least a subdirectory.

PROCEDURE InsertLogString;
Insert "Log.Ln; Log.String();" at the cursor position.

PROCEDURE InsertProcHeader;
Create a PROCEDURE block, having the text from the current selection as name.

PROCEDURE IsDash (ch: CHAR): BOOLEAN;
Return TRUE iff the character ch is a (kind of) hyphen or dash.

PROCEDURE IsDigit (ch: CHAR): BOOLEAN;
Return TRUE iff the character ch is in the range 0..9.

PROCEDURE IsLetter (ch: CHAR): BOOLEAN;
Return TRUE iff the character ch is in the range a..z, A..Z or it is a accented letter.

PROCEDURE IsPunctuation (ch: CHAR): BOOLEAN;
Return TRUE iff the character ch is a dot, an exclamation or an question mark.

PROCEDURE IsSpace (ch: CHAR): BOOLEAN;
Return TRUE iff the character ch is a blank space, a tab or a non-breaking space.

PROCEDURE NewSentence (file: TextModels.Model; pos: INTEGER): BOOLEAN,;
Checks whether pos is the beginning of a new sentence. Used because the lexical analysis of Fips returns too
broad text spans.

PROCEDURE OpenView (v: Views.View; loc: Files.Locator; IN name: Files.Name; OUT w:
Windows.Window);
Open a window with the specifications v, loc, name.

PROCEDURE ParentDirectory (IN dir: ARRAY OF CHAR; OUT parentDir: ARRAY OF CHAR);
Return the complete path of the parent directory.

PROCEDURE PathToFileSpec (IN fleName: ARRAY OF CHAR; OUT loc: Files.Locator; OUT name:
Files.Name);
Return the file specifications (locator and name) for the file specified by its complete filename.

PROCEDURE ReadListFromFile (IN filename: Files.Name; OUT list: POINTER TO ARRAY OF INTEGER);
Read an array of integers from the file specified. The resulting array is dynamic.

PROCEDURE ReadString (t: TextModels.Model; startPos: INTEGER; OUT endPos: INTEGER; OUT str:

Dialog.String);
Read a string from t beginning at position pos and return the position endPos of its end.

97

PROCEDURE ReadWord (t: TextModels.Model; min_len, startPos: INTEGER; OUT endPos: INTEGER; OUT
word: Dialog.String);

Read a word from t beginning at position pos, of minimal length min_len and return the word w and the position
endPos of its end. Skip the HTML-like tagged text.

PROCEDURE Register (model: TextModels.Model; fileName: Files.Name; IN format: ARRAY OF CHAR);
Save the text model to a file specified by "fileName" in the desired format ("txt" or "odc").

PROCEDURE ReplaceQuotes (VAR str: ARRAY OF CHAR);
Replace simple quotes ' with stars *. Necessary for storing strings to databases.

PROCEDURE RetrieveSrcView (OUT textView: TextViews.View);
Get the first text view on the form that has the focus.

PROCEDURE RetrieveTrgView (OUT textView: TextViews.View);
Get the second text view on the form that has the focus.

PROCEDURE ShortenFileName (IN filename: ARRAY OF CHAR; desiredLength: INTEGER; OUT
newFilename: ARRAY OF CHAR);
Takes a filename and replace part of the path with "..." in order to shorten it at the desired length.

PROCEDURE ShowWindowsNames;
Print to the Log window the names of the windows currently opened in the system.

PROCEDURE Trim (VAR input: ARRAY OF CHAR; trimList: ARRAY OF CHAR);
Trim from input the left and right the symbols that are in list trimList.

PROCEDURE UndoReplaceQuotes (VAR str: ARRAY OF CHAR);
Replace stars * with simple quotes '. Undo operation for ReplaceQuotes.

PROCEDURE ValidWordChar (ch: CHAR): BOOLEAN;
Return TRUE iff the character ch a letter or a hyphen.

PROCEDURE ValidatePath (path: Files.Name): BOOLEAN;
If the directory specified by path doesn't exist, then create it.

PROCEDURE WorkingDirectory (IN dir: ARRAY OF CHAR; OUT wrkDir: ARRAY OF CHAR);
Return the short name of the parent directory.

PROCEDURE WriteCursorPosition;
Print to the Log window the file position of the cursor of the system.

98

UtilsOptions
Last updated Dec 10, 2004 (0289), Violeta.Seretan@Ilatl.unige.ch

DEFINITION UtilsOptions;
IMPORT Dialog, Dates;

TYPE

ScanParam = RECORD
source, target: Dialog.String;
srcdrive, trgdrive: Dialog.List;
dirContentList, filteredContent: Dialog.Selection;
fname: ARRAY 256 OF CHAR;
ftype: ARRAY 16 OF CHAR;
fileTypeList: Dialog.Combo;
include, existExcluded, stop: BOOLEAN;
stopDir: Dialog.String;
excludedFolders: Dialog.Combo;
lastModif: TimeRecord;
common_file; BOOLEAN,;
outputFormat: ARRAY 10 OF CHAR;
outputFormatFlag: INTEGER,;
newDB: BOOLEAN,;
label: Dialog.String

END;

TimeRecord = RECORD
therelsFilter, byNbDays: BOOLEAN;
nbDays: INTEGER;
fromDay, toDay: Dates.Date

END;

VAR
dataPath: Dialog.String;
path: Dialog.String;

PROCEDURE ReadScanParam (VAR param: ScanParam);
PROCEDURE ResetAllScanParam (VAR param: ScanParam);
PROCEDURE SaveScanParam (param: ScanParam);

END UtilsOptions.

Module for saving and retrieving options of Utils subsystem. The path to options files is defined in dataPath.
Associated GUI: 'Select.odc'.

TYPE

ScanParam = RECORD
source, target: Dialog.String;
srcdrive, trgdrive: Dialog.List;
dirContentList, filteredContent: Dialog.Selection;
fname: ARRAY 256 OF CHAR;
ftype: ARRAY 16 OF CHAR;
fileTypeList: Dialog.Combo;
include, existExcluded, stop: BOOLEAN;
stopDir: Dialog.String;
excludedFolders: Dialog.Combo;
lastModif: TimeRecord;
common_file;: BOOLEAN;
outputFormat: ARRAY 10 OF CHAR;

99

outputFormatFlag: INTEGER,;
newDB: BOOLEAN,;
label; Dialog.String
END;
Scan parameters: parameters for the selection of files.

source, target: Dialog.String;
Source and target folders.

srcdrive, trgdrive: Dialog.List;
Source and target drive letters.

dirContentList, filteredContent: Dialog.Selection;
Lists that display the content (complete or filtered according to the filtering parameters) of the source folder.

fname: ARRAY 256 OF CHAR;
Filtering parameter: string that must be contained by the names of files in source folder.

ftype: ARRAY 16 OF CHAR;
Filtering parameter. Deprecated (replaced by ‘fileTypeList').

fileTypeList: Dialog.Combo;
Filtering parameter: the type of a file in the source folder must match one of the types in this list.

include: BOOLEAN;
Filtering parameter: include subdirectories of the source folder.

existExcluded: BOOLEAN;
Filtering parameter: exclude files that are in the list of excluded folders.

stop: BOOLEAN;
Filtering parameter: there are stop directories (to be excluded). Deprecated (replaced by 'existExcluded").

stopDir: Dialog.String;
Filtering parameter: directory to be excluded. Deprecated (replaced by 'excludedFolders").

excludedFolders: Dialog.Combo;
Filtering parameter: list of names of folders to be excluded, e.g. "Log".

lastModif: TimeRecord,;
Filtering parameter: include only file whose last modification date (or creation date) satisfy the time parameters.

common_file: BOOLEAN;
Output option: save results to a common file. Applies to processor "Term Extractor” only.

outputFormat: ARRAY 10 OF CHAR,;
Output option: save results in ASCII or BlackBox file format (possible values: "txt" for ASCII, "odc" for BlackBox
file format).

outputFormatFlag: INTEGER,;
Output option: save results in ASCII or BlackBox file format (0 for ASCII, 1 for BlackBox file format). Used on
the associated GUI.

newDB: BOOLEAN;
Output option: the coocurences database is cleared before storing new results. Applies to processor "Term
Extractor” only.

label: Dialog.String
The label of the action button in the associated GUI.

100

TYPE TimeRecord = RECORD
therelsFilter, byNbDays: BOOLEAN;
nbDays: INTEGER;
fromDay, toDay: Dates.Date

END;

The type for time filtering parameters: parameters for files filtering based on the file modification date and time.

therelsFilter: BOOLEAN;
TRUE iff there is a time filtering.

byNbDays: BOOLEAN,;
TRUE iff the user chooses "last modified in the last n days".
FALSE iff the user chooses "last modified between date and date".

nbDays: INTEGER,;
Number of days, for the condition "file last modified 'nbDays' days ago".

fromDay, toDay: Dates.Date
Limits of time interval, for the condition "file last modified between date... and date...".

VAR dataPath: Dialog.String;
Path to options files of subsystem.

VAR path: Dialog.String;
Path to subsystem.

PROCEDURE ReadScanParam (VAR param: ScanParam);
Read scan parameters from a file in XML format (scan.txt).

PROCEDURE ResetAllScanParam (VAR param: ScanParam);
Initialization of scan parameters and time filtering parameters.

PROCEDURE SaveScanParam (param: ScanParam);
Save scan parameters in a file in XML format (scan.txt).

101

UtilsProcessFiles
Last updated Dec 10, 2004 (0036), Violeta.Seretan@Ilatl.unige.ch

DEFINITION UtilsProcessFiles;
IMPORT UtilsScan, FipsTools;

CONST
Parser = 1;
Show = 0;
TermExtractor = 2;
Translator = 3;

VAR
crtFileNo-: INTEGER,;
filelist-: UtilsScan.DocNames;
nbFiles-: INTEGER,;
options: FipsTools.Option;
processor: INTEGER,;

PROCEDURE ProcessFileList (filelist: UtilsScan.DocNames; actionType: INTEGER);
PROCEDURE SetFileList;

PROCEDURE ShowsSelectioninfo;

PROCEDURE StopProcessing;

END UtilsProcessFiles.

This module (1) retrieves the list of files in the selection defined according to the parameters of module
UtilsScan, and (2) performs a given processing on this file list. The processing of the list is implemented as a
Service.Action, thus the system is not "frozen" but refreshes after each file being processed.

Associated GUI: 'Select.odc'.

CONST Parser = 1;
Defines a type of processing to perform on the files list: correspond to Fips parser.

CONST Show = 0;
Defines a type of processing to perform on the files list: correspond to simply listing the files names.

CONST TermExtractor = 2;
Defines a type of processing to perform on the files list: correspond to Fips Term Extractor.

CONST Translator = 3;
Defines a type of processing to perform on the files list: correspond to Its translator.

VAR crtFileNo-: INTEGER;
The number of the currently processed file, from 1 to nbFiles.

VAR filelist-: UtilsScan.DocNames;
List of files to process (contains files path and hame).

VAR nbFiles-: INTEGER,;
Total number of files to process (length of filelist).

VAR options: FipsTools.Option;
Fips parser option.

VAR processor: INTEGER,;
What processing to perfom on the file list; possible values: constants Show, Parser, Term Extractor,

102

Translator.

PROCEDURE ProcessFileList (filelist: UtilsScan.DocNames; actionType: INTEGER);
Main procedure: start the processing for the given file list, with the action to perform given by ‘actionType'
(possible values: the constants Show, Parser, Term Extractor, Translator).

PROCEDURE SetFileList;
Scan the input directory according to the parameters in UtilsScan, and build up the file list to process.

PROCEDURE ShowsSelectionlInfo;
Show the file list information: number of files, total size of files.

PROCEDURE StopProcessing;
Notifier for the "Stop" button: finish processing (after the current file being processed) and show results.

103

UtilsScan
Last updated Dec 09, 2004 (0035), Violeta.Seretan@Ilatl.unige.ch

DEFINITION UtilsScan;
IMPORT Dialog, UtilsFileTree, UtilsOptions;

TYPE
DocNames = POINTER TO RECORD
path, name: DynString;
next: DocNames
END;

VAR
dlg: UtilsFileTree.Dlg;
param: UtilsOptions.ScanParam;

PROCEDURE AddFileTypeGuard (VAR par: Dialog.Par);

PROCEDURE AddFolderNameGuard (VAR par: Dialog.Par);

PROCEDURE BackGuardl (VAR par: Dialog.Par);

PROCEDURE BackGuard2 (VAR par: Dialog.Par);

PROCEDURE BuildList (OUT list: Dialog.Selection; filtered: BOOLEAN; IN path: ARRAY OF CHAR);
PROCEDURE CommonFileGuard (VAR par: Dialog.Par);

PROCEDURE DateBetweenGuard (VAR par: Dialog.Par);

PROCEDURE DateByGuard (VAR par: Dialog.Par);

PROCEDURE DisableGuard (VAR par: Dialog.Par);

PROCEDURE ExcludedFoldersGuard (VAR par: Dialog.Par);

PROCEDURE FormatNatifier (op, from, to: INTEGER);

PROCEDURE ListNotifier (n, op, from, to: INTEGER);

PROCEDURE NbDaysGuard (VAR par: Dialog.Par);

PROCEDURE NewDBGuard (VAR par: Dialog.Par);

PROCEDURE OnAddFileType;

PROCEDURE OnAddFolderName;

PROCEDURE OnBack1,;

PROCEDURE OnBack2;

PROCEDURE OnBrowsel,

PROCEDURE OnBrowse3;

PROCEDURE OnCheckAll;

PROCEDURE OninvertSelection;

PROCEDURE OnUncheckAll;

PROCEDURE ResetAll;

PROCEDURE SaveToTextFile (op, from, to: INTEGER);

PROCEDURE Scan (VAR src: ARRAY OF CHAR; OUT nbFiles, totalSize: INTEGER): DocNames;
PROCEDURE SelectDirectory (VAR tree: Dialog.Tree; IN nodeName: ARRAY OF CHAR);
PROCEDURE TreeNotifier (op, from, to: INTEGER);

END UtilsScan.

This module implements procedures for browsing the directory structure on the disk drives and selecting the
files
belonging to the source directory. Several selection parameters can be defined:
1. filtering parameters, to apply an automatic filter on the files of the source folder, as follows:

- include/exclude files from subdirectories of source directory, recursively, as opposed to including only the
files in that directory;

- exclude files from directories that have a given name;

- include only files of given types;

- include only files whose name contains a string

- include only files having the last modification date in a given interval or a given number of days ago.

104

2. manual selection (on the result of the automatic selection).
Associated GUI form: 'Select.odc'.

TYPE DocNames = POINTER TO RECORD
path, name: DynString;
next: DocNames

END;

List of files in the selection.

path, name: DynString;
Path and (short) name of the file in the list.

next: DocNames
Pointer to the next file in the selection list.

VAR dlg: UtilsFileTree.Dlg;
File tree dialog that displays the structure of source folder defined in 'param'’ .

VAR param: UtilsOptions.ScanParam;
Selection parameters.

PROCEDURE AddFileTypeGuard (VAR par: Dialog.Par);
Guard for the button "Add" of the combo box for types. Disable the button when the item to add is empty.

PROCEDURE AddFolderNameGuard (VAR par: Dialog.Par);
Guard for the button "Add" of the combo box for excluded folders.
Disable the button when the item to add is empty, or there is no option to exclude folders.

PROCEDURE BackGuard1l (VAR par: Dialog.Par);
Guard for the button "<--" (Back) next to the source folder: disable if source folder is empty.

PROCEDURE BackGuard2 (VAR par: Dialog.Par);
Guard for the button "<--" (Back) next to the source folder: disable if target folder is empty.

PROCEDURE BuildList (OUT list: Dialog.Selection; filtered: BOOLEAN; IN path: ARRAY OF CHAR);
Build the list 'list' with the first-level content of directory given by 'path'.
If filtered is TRUE, apply the filter set by the selection parameters.

PROCEDURE CommonFileGuard (VAR par: Dialog.Par);
Guard for radio buttons ‘all results in one file' and 'results file per file' on the associated GUI.
Disable it when the option 'Save results to' - 'text file' was not chosen.

PROCEDURE DateBetweenGuard (VAR par: Dialog.Par);

Guard for fields 'datel' and 'date2' in the option 'between datel and date2' on the associated GUI.

Disable it when the option ‘include only files created/ modified' or 'between datel and date2' was not chosen.
PROCEDURE DateByGuard (VAR par: Dialog.Par);

Guard for radio buttons 'in the last n days' and 'between date... and date..."' on the associated GUI.

Disable them when the option ‘include only files created/ modified' was not chosen.

PROCEDURE DisableGuard (VAR par: Dialog.Par);
Guard for permanently disabling some items, such as the list showing the content of the target folder.

PROCEDURE ExcludedFoldersGuard (VAR par: Dialog.Par);
Guard for the combo box for excluded folders. Disable the box if there is no option to exclude folders.

PROCEDURE FormatNotifier (op, from, to: INTEGER);
Notifier for the radio buttons for the output format of result files. Set a string variable accordingly.

PROCEDURE ListNaotifier (n, op, from, to: INTEGER);

105

Notifier for the lists displaying the drive letters. Set the source (or target) folder
and file tree dialog to the selected drive.

PROCEDURE NbDaysGuard (VAR par: Dialog.Par);
Guard for field 'n' in the option 'in the last n days' on the associated GUI.
Disable it when the option ‘include only files created/ modified' or 'in the last n days' was not chosen.

PROCEDURE NewDBGuard (VAR par: Dialog.Par);

Guard for radio buttons 'begin with empty table' and ‘continue with existing results'.

Disable these buttons when the option 'Sve results to' - 'database in the associated datasource' was not
chosen.

PROCEDURE OnAddFileType;
Notifier for the button "Add" of the combo box for types. Add a new item to the combo box.

PROCEDURE OnAddFolderName;
Notifier for the button "Add" of the combo box for excluded folders. Add a new item to the combo box.

PROCEDURE OnBackl;
Notifier for the button "<--" (Back) next to the source folder: set the source folder to its parent
and re-build the source file tree.

PROCEDURE OnBack2;
Notifier for the button "<--" (Back) next to the target folder: set the target folder to its parent
and re-build the target file tree.

PROCEDURE OnBrowsel,
Notifier for the button "Browse" next to the source directory in the associated GUI.
Build the file tree dialog that allows to browse and set the source directory.

PROCEDURE OnBrowse3;
Notifier for the button "Browse" next to the target directory in the associated GUI.
Build the file tree dialog that allows to browse and set the target directory.

PROCEDURE OnCheckAll;
Notifier for button "Check All" on the associated GUI. Select all items in the list of manual selection.

PROCEDURE OnlnvertSelection;
Notifier for button "Invert" on the associated GUI. Invert the selection in the list of manual selection.

PROCEDURE OnUncheckAll;
Notifier for button "Uncheck All" on the associated GUI. Uncheck all items in the list of manual selection.

PROCEDURE ResetAll;
Reset selection parameters.

PROCEDURE SaveToTextFile (op, from, to: INTEGER);
Notifier for the radio button 'Save results to' - 'text file'.
Show a warning explaining the limitations of choosing this option.

PROCEDURE Scan (VAR src: ARRAY OF CHAR; OUT nbFiles, totalSize: INTEGER): DocNames;
Main procedure. Scan the structure of folder 'src' and return the list of files selected according to the selection
parameters; return the number of files in the selection and their total size (in bytes).

PROCEDURE SelectDirectory (VAR tree: Dialog.Tree; IN nodeName: ARRAY OF CHAR);
Select in the given dialog tree the node having the label 'nodeName'.

PROCEDURE TreeNotifier (op, from, to: INTEGER);

Notifier for the file tree dialogs on the associated GUI.
On user double click, set the source (or the target) folder and re-creates the file tree.

106

On user click, set the source (or the target) folder.

107

	ruig_docu
	1_cover
	2_toc
	3_body
	01_(Collocation_)Sys-Map
	02 User Manual
	03 Document1
	03 Document2
	Document3
	Document4
	Document5
	Document6
	Document7
	Document8
	Document9
	Document10
	04 a Developper Manual
	04 Collocation_Docu_Align
	Collocation_Docu_Browse
	Collocation_Docu_Cmds
	Collocation_Docu_DB
	Collocation_Docu_DBAux
	Collocation_Docu_Exe
	Collocation_Docu_Filter
	Collocation_Docu_Global
	Collocation_Docu_Options
	Collocation_Docu_Read
	Collocation_Docu_Select
	Collocation_Docu_Validate
	Collocation_Docu_Web
	06 Utils - Subystem Map
	07 Utils - User Manual
	08 Utils - Developper Manual
	09 UtilsCmds Documentation
	UtilsFileTree Documentation
	UtilsFunctions Documentation
	UtilsOptions Documentation
	UtilsProcessFiles Documentation
	UtilsScan Documentation

	1.1
	1.2
	1.3
	1.4
	1.5
	1
	2.1
	2.2
	2.3
	2.4
	2

